

## PRESENT

## An Ultra-Lightweight Block Cipher

A. Bogdanov<sup>1</sup>, L. R. Knudsen<sup>3</sup>, G. Leander<sup>1</sup>, C. Paar<sup>1</sup>, <u>A. Poschmann<sup>1</sup></u>, M. J. B. Robshaw<sup>2</sup>, Y. Seurin<sup>2</sup>, C. Vikkelsoe<sup>3</sup>

> 1 Ruhr-Universität Bochum 2 Technical University Denmark, Denmark 3 Orange Lab, France

> > CHES 2007

- Motivation
- PRESENT Specification
- Security Analysis
- Implementation Results
- Conclusion

13.09.2007 2

## Why yet another Block Cipher? (1)



- Paradigm shift towards Pervasive Computing:
  - cost driven deployment
  - very constrained devices in terms of CPU, memory, power, and energy
  - small messages
- •Traditionally efficient equivalent to high throughput
  - Known ciphers designed for high troughput, high speed, high ...

#### Demand for an ultra-lightweight block cipher

13.09.2007 3

## Why yet another Block Cipher? (2)



- Security properties well understood
- Sound building blocks and design principles available
- Block ciphers can be used
  - as stream ciphers
  - for hashing

## **Metric and Tradeoffs**



Lightweight Cryptography From An Engineers Perspective

Axel Poschmann

Horst-Görtz

für IT Sicherheit

<sup>5</sup> 

## **Requirements on PRESENT**

- **Design** goals
  - Efficient hardware implementations
  - Moderate security level (80 bits)
  - Simplicity
- Small amounts of plaintexts
- encryption only core
- Metrics:
  - Security 1.
  - Area, Power 2.
  - 3. Speed

Lightweight Cryptography From An Engineers Perspective

13.09.2007

Axel Poschmann

6

Horst-Görtz

für IT Sicherheit

- Motivation
- PRESENT Specification
- Security Analysis
- Implementation Results
- Conclusion

13.09.2007 7

## **Top Level Description of PRESENT**





Lightweight Cryptography From An Engineers Perspective

## **S-Boxes in Hardware**



- LUT are realized as boolean functions
- Highly non-linear
- High boolean complexity
- Big area

4 x 4



13.09.2007 9

Lightweight Cryptography From An Engineers Perspective

## **S-Box Design Criteria**



We denote the Fourier coefficient of S by

$$S_b^W(a) = \sum_{x \in \mathbb{F}_2^4} (-1)^{\langle b, \mathbb{S}(x) \rangle + \langle a, x \rangle}.$$

1 For any fixed non-zero input difference Δ<sub>i</sub> ∈ 𝔽<sup>4</sup><sub>2</sub> and any fixed non-zero output difference Δ<sub>0</sub> ∈ 𝔽<sup>4</sup><sub>2</sub> we require

$$\#\{x\in \mathbb{F}_2^4|S(x)+S(x+\Delta_l)=\Delta_0\}\leq 4.$$

2 For any fixed non-zero input difference Δ<sub>l</sub> ∈ 𝔽<sup>4</sup><sub>2</sub> and any fixed output difference Δ<sub>O</sub> ∈ 𝔽<sup>4</sup><sub>2</sub> such that wt(Δ<sub>l</sub>) = wt(Δ<sub>O</sub>) = 1 we have

$$\{x \in \mathbb{F}_2^4 | \mathbb{S}(x) + \mathbb{S}(x + \Delta_l) = \Delta_0\} = \emptyset.$$

- **3** For all non-zero  $a \in \mathbb{F}_2^4$  and all non-zero  $b \in \mathbb{F}_4$  it holds that  $|S_b^W(a)| \le 8$ .
- 4 For all a ∈ 𝔽<sup>4</sup><sub>2</sub> and all non-zero b ∈ 𝔽<sub>4</sub> such that wt(a) = wt(b) = 1 it holds that S<sup>W</sup><sub>b</sub>(a) = ±4.

13.09.2007 10

#### **PRESENT S-Box**





- Smallest 4x4 S-Boxes in hardware (28 GE)
- Fullfilling above conditions





#### Simple bit permutation

13.09.2007 12

Lightweight Cryptography From An Engineers Perspective

#### PRESENT Permutation in Hardware



- Just wires
- No transistors required
- No delay

**0 GE** (some wiring)

13.09.2007 13

Horst-Görtz Ir

für IT Sicherheit

Lightweight Cryptography From An Engineers Perspective



## **PRESENT Key Schedule**

#### Notation:

- K 80-bit key register
- At round 1:  $K = k_{79}k_{78}...k_1k_0 = initial key$
- At round i:  $K_i = k_{79}k_{78...}k_1k_{16}$  = roundkey for round i

#### **Updating K:**

- 2.  $[k_{79}k_{78}...k_1k_0] = [k_{18}k_{17}...k_{20}k_{19}]$
- 3.  $[k_{79}k_{78}k_{77}k_{76}] = S[k_{79}k_{78}k_{77}k_{76}]$
- 4.  $[k_{19}k_{18}k_{17}k_{16}k_{15}] = [k_{19}k_{18}k_{17}k_{16}k_{15}]$  XOR round\_counter

13.09.2007 14

- Motivation
- PRESENT Specification
- Security Analysis
- Implementation Results
- Conclusion

13.09.2007 15

Lightweight Cryptography From An Engineers Perspective



#### Theorem 1:

Any 5-round differential characteristic of PRESENT has at least 10 active S-Boxes.

- Any differential characteristic over 25 rounds must have at least 50 active S-Boxes
- Maximum differential characteristic is 2<sup>-2</sup>
- Probability of 25-round characteristic is bounded by  $(2^{-2})^{50} = 2^{-100}$

2<sup>100</sup> >> 2<sup>64</sup> (available PT/CT pairs) 2<sup>100</sup> >> 2<sup>80</sup> (key size)

> 13.09.2007 16



13.09.2007 17

#### Theorem 2:

- Let  $\varepsilon_{4R}$  be the maximal bias of a linear approximation of four rounds of PRESENT. Then  $\varepsilon_{4R} \leq 2^{-7}$ .
- The maximum bias of a 28-round linear approximation is  $2^6 \ge (\epsilon_{4R})^7 = 2^6 \ge (2^{-7})^2 = 2^{-43}$
- About  $(2^{43})^2 = 2^{86}$  known PT/CT pairs required

## 2<sup>86</sup> >> 2<sup>64</sup> (available plaintext) 2<sup>86</sup> >> 2<sup>80</sup> (key size)

Lightweight Cryptography From An Engineers Perspective



## Algebraic Cryptanalysis

• The PRESENT 4 x 4 S-Boxes can be described by 21 equations over GF(2) using 8 variables

- 21x17x31 = 11,067 quadratic equations
- 8x17x31 = 4,216 variables
- Small scale version analyzed
  - 7 S-Boxes
  - 28 bit block
  - 2 rounds



# Buchberger and F<sub>4</sub> algorithm fail to deliver a solution in a reasonable time for this 2-round 28-bit mini-PRESENT

13.09.2007 18

Lightweight Cryptography From An Engineers Perspective

- Motivation
- PRESENT Specification
- Security Analysis
- Implementation Results
- Conclusion

13.09.2007 19

Lightweight Cryptography From An Engineers Perspective

## Toolchain



#### Mentor Graphics ModelSim SE Plus 5.8c



#### Synopsys DesignCompiler Y-2006-06



#### Virtual Silicon UMCL18G212T3

13.09.2007 20

Lightweight Cryptography From An Engineers Perspective

## **PRESENT-80** Datapath



- 32 cycles
- 1570 GE
- 5 µW@100kHz

13.09.2007 21

Horst-Görtz Institut

Lightweight Cryptography From An Engineers Perspective

## **Comparison of Lightweight Ciphers**



Lightweight Cryptography From An Engineers Perspective

Axel Poschmann

Horst-Görtz Inst

für IT Sicherheit

<sup>22</sup> 



## Outline



- Motivation
- PRESENT Specification
- Security Analysis
- Implementation Results
- Conclusion

13.09.2007 23

Lightweight Cryptography From An Engineers Perspective





- Presented the new block cipher PRESENT
- SPN with 64-bit state, 80-bit key, 31 rounds
- Based on well-known design principles (feature)
- Very small footprint in hardware (1570 GE)
- Low power estimates (5 μW)
- Lightweight block ciphers have similar footprint as stream ciphers

## Please try to break PRESENT!



## Thank you! Questions?

www.crypto.rub.de poschmann@crypto.rub.de

#### PRESENT Permutation -Further Notes





P(i) =  $\begin{cases} 16 * i \mod 63, 1 \le i \le 62 \\ i, i \in \{0, 63\} \end{cases}$ 



- Involution P(P(P(i))) = i
  - Could be useful for serialization

13.09.2007 26

Lightweight Cryptography From An Engineers Perspective