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ABSTRACT

In this thesis, we present the first implementation results for Dragon, HC-128, LEX,
Salsa20, and Sosemanuk (which are stream ciphers in Phase 2 of Profile 1 of the eSTREAM
project) on 8-bit microcontrollers.

For the evaluation process, we follow a two-stage approach and compare with efficient
AES implementations. First, the C code implementation provided by the designers is
ported to an 8-bit AVR microcontroller and the suitability of Dragon, HC-128, LEX,
Salsa20, and Sosemanuk for the use in embedded systems is assessed. In the second stage
we implement the stream ciphers in Assembly to tap the full potential of an embedded
implementation. Our efficiency metrics are performance of keystream generation, key
setup, and IV setup, and memory usage in flash memory and SRAM, since microcon-
trollers are usually strongly constrained in memory resources.

Concerning throughput, all stream ciphers outperform the AES. Sosemanuk, for in-
stance, reaches three times the throughput of the AES. In terms of memory requirements,
Salsa20 and LEX are almost as compact as AES. When considering the time-memory
tradeoff metric, LEX and Salsa20 yield significantly better results than AES.

If we involve the time-memory tradeoff metric of our C language implementations and
compare it with the time-memory tradeoff metric of our Assembly language imple-
mentations, we can observe immense improvements of all ciphers. For instance, the
time-memory tradeoff value of LEX is more than 1, 800 % better in Assembly language,
whereby Sosemanuk holds the least enhancement with – only – 600 % increase.

Considering flash memory requirements all ciphers are executable on smaller devices in
Assembly language. E.g. the Assembly implementation of the Dragon cipher counts
12% of the original codesize, allowing the execution on even the smallest device of the
AVR family (ATmega8) instead of the biggest device (Atmega128).

To the best of our knowledge this thesis includes the fastest implementations world wide
of Dragon, LEX, HC-128, Salsa20, and Sosemanuk for the 8-bit AVR microcontroller
family.
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1 Introduction

1.1 Motivation

In 2005, the European Network of Excellence in Cryptology (ECRYPT) launched a call
for stream cipher primitives [6] to identify new stream ciphers suitable for widespread
adoption that may also serve as an alternative for the AES [8]. Profile I of this call
asked for stream ciphers for software applications with high throughput requirements,
while Profile II aims at identifying stream ciphers suitable for hardware applications
with restricted resources such as limited storage, gate count, or power consumption.

The original call says that performance benchmarking for Profile I “may include 8-bit
processors (as found in inexpensive smart cards), 32-bit processors (e.g., the Pentium
family) to the modern 64-bit processors”. However, the current testing framework of the
eSTREAM project [7, 13, 11] exclusively targets general-purpose 32-bit and 64-bit CPUs
for Profile I candidates. Given the great importance of small embedded controllers in
the real world (the market share of embedded processors is more than 99%), we feel that
such an evaluation is of value.

This master thesis is driven by the question of how efficient candidates in the current
focus of Profile I can be implemented on small 8-bit embedded microprocessors. Small 8-
bit microprocessors are constrained in resources such as flash memory and RAM. Besides
throughput, efficiency has an particular meaning in this context: resources needed by an
implementation of a stream cipher should be kept small, since embedded applications
are very often cost constrained. In fact, in many situations cost (given by memory
consumption) is more crucial than throughput, in particular because many embedded
applications only encrypt small payloads.

Small 8-bit embedded microprocessors are widely used in various applications, in-
cluding smart cards, household appliances, industrial control, and many other systems.
Modern cars, for instance, are equipped with more than fifty microcontrollers. In em-
bedded systems, cryptography is often needed for authentication, secure messaging, and
software download.

Though an 8-bit microprocessor may not be the mainstream target platform of Profile I
we are confident that there is also a wide public and industrial interest in finding out
whether candidates of Profile I can also serve as possible secure alternatives to AES on
small 8-bit embedded microprocessors.



2 Introduction

The results presented in this thesis are the first published benchmarking numbers of
eSTREAM candidates on 8-bit AVR microcontrollers. This thesis thereby contributes
to the evaluation of the focused Profile I candidates.

1.2 Aim of this Thesis

In this work, we evaluate performance aspects of stream ciphers that are in the focus of
Profile I of Phase 2 of eSTREAM and not yet broken. In detail, this work covers Dragon,
HC-128, LEX, Salsa20, and SOSEMANUK. Because of recently reported key recovery
attacks, Py/Pypy [25] and Phelix [24] are not included in our testing framework. The
aim of this thesis is the efficient implementation of the above mentioned ciphers on 8-bit
AVR microcontrollers and the resulting performance benchmarks.

1.3 Approach

For the evaluation of Profile I candidates, the C code implementation provided by the
designers is ported to an 8-bit AVR microcontroller. For comparison, we also implement
the byte-oriented AES taken from Gladman [15]. Our comparison metric includes (i)
throughput of keystream, (ii) time needed for key setup, (iii) time needed for IV setup,
(iv) memory allocation in flash (program code), and (v) memory allocation in SRAM
(variables).

Furthermore we carry out an evaluation of the most promising candidates in Assembly
language. We implement the AES (for comparison reasons), DRAGON, LEX, Salsa20,
and Sosemanuk. We excluded HC-128 from this list of Assembly implementations be-
cause of its huge amount of required SRAM and the hence resulting used ATmega128l
device.

1.4 Organization of this Thesis

This thesis is organized as follows: in Chapter 2 a general introduction to cryptol-
ogy focusing on block and stream ciphers is given. Then in Chapter 3 we provide the
specifications for the implemented ciphers in this work. For comparison reasons, we also
included the AES. In Chapter 4 an introduction to microcontrollers, the Atmel Corpora-
tion and their product, the ATmega family of 8-bit microcontrollers is given. Afterwards
in Chapter 5 we present our used tool-chain and some important adjustments we made.
Chapter 6 gives an introduction to our C language implementations. First, the separate
ciphers and their implementations are presented, followed by a summarization of their
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performance results and memory requirements. Almost the same is done in the follow-
ing Chapter 7. Here our results with the ciphers efficiently implemented in Assembly
language are presented. Finally, we conclude the thesis with a summary and the future
work in Chapter 8.



4 Introduction



2 Cryptology

Cryptology is the science of information security. It is widely diversified and also cov-
ers several fields like authentication, access control, network security, and information
confidentiality, to mention just a few. Cryptology can be divided into two principal
parts, namely cryptography (e.g. the development of new encryption techniques) and
cryptanalysis (e.g. the science of breaking cryptographic tools).
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Social Engineering
 

Implementation 
Attacks
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Figure 2.1: Overview Cryptology

2.1 Cryptography

Cryptography can be segmented into three main disciplines: symmetric-key cryptogra-
phy, public-key/asymmetric-key cryptography and cryptographic protocols. Symmetric-
key cryptography ensuring confidentiality deals with encryption methods in which the
sender and the receiver use the same key to encrypt and decrypt messages. Problems
occur if the number of participants increases. Public-key cryptography has been publicly
known since a paper by Whitfield Diffie and Martin Hellman was published in the year
1976. Here the sender and the receiver are no longer forced to use the same key for



6 Cryptology

encryption and decryption. There exist a private key and a public key which are mathe-
matically related, but the private key cannot be derived from the public key within any
practical time. The private key is kept secret, while the public key can be distributed
without restrictions, but may be certified by a trusted third party. Cryptographic pro-
tocols are procedures where participants can exchange sensible data over unprotected
channels.

The field of symmetric-key cryptography can be divided into three sub-disciplines:
block ciphers, hash functions and stream ciphers. Block ciphers and stream ciphers will
be discussed in the following sections. A short introduction to hash functions is given
in section 3.6, as part of the Salsa20 cipher.

2.1.1 Block Ciphers

When using block ciphers the plaintext must be subdivided in blocks of fixed length
(typically 64, 128, and 256 bits), because block ciphers encrypt and decrypt block-wise.
A block cipher requires a key and the plaintext as input and outputs the corresponding
ciphertext. Mathematically described, a block cipher consists of two parts: an encryption
function E and a decryption function D = E−1. Let n be the size of a plaintext block,
let k denote the key, m is the plaintext and c the corresponding ciphertext, then:

c = Ek(m) and m = Dk(c) = E−1

k (c) = E−1

k (Ek(m))

Many block ciphers follow a simple construction schema. They use simple operations
like rotation, shift, XOR and substitutions (also called S-boxes), but repeatedly apply
this operations for n iterations (n normally lies between 4 and 32). The iteration is
called a ‘round’ and the simple construction that is applied in every round is called
a ‘round function’. Dependent on the length of the plaintext, it may be necessary to
expand the plaintext to a multiple of the block size. There are different modes available
when using a block cipher for enciphering multiple blocks. In the following sections we
take a closer look to some dependent modes of operation, especially the ones that are
able to build a stream cipher.

ECB Mode

The electronic code book mode (ECB) is the simplest mode of operation. Each block of
ciphertext is encrypted separately. One huge disadvantage of this mode is the fact that
identical blocks of plaintext lead to identical blocks of ciphertext, while the key stays
untouched. Similarly, a ciphertext block could be exchanged without detection on the
side of the receiver.
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EncryptionKey

Plaintext #1

Ciphertext #1

EncryptionKey

Ciphertext #2

Plaintext #2

Figure 2.2: ECB mode encryption

CBC Mode

The cipher-block chaining mode (CBC) requires the ciphertext block of the previous
round to encrypt the plaintext block of the current round. As there is no previous
ciphertext in the first round an initialization vector (IV) is needed. In this mode the
previous ciphertext block is XORed with the plaintext before encryption. The mathe-
matical formula for the CBC encryption is:

c0 = IV , ci = Ek(mi ⊕ ci−1)

and for the decryption:

c0 = IV , pi = E−1

k (ci) ⊕ ci−1

EncryptionKey

Plaintext #1

Ciphertext #1

IV

EncryptionKey

Plaintext #2

Ciphertext #2

Figure 2.3: CBC mode encryption

NOTE: A flipped bit in the plaintext affects all following ciphertexts. Decryption can
be parallelized, which is not possible for encryption.
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CFB Mode

The cipher feedback mode (CFB) works similarly to the CBC mode. In the first round
the IV serves as input to the encryption function. In the following rounds the previous
ciphertext is used as input. The output of the encryption function is XORed with
the plaintext. The hence resulting block is both, the ciphertext and the input for the
encryption function in the next round as well. A block cipher in CFB mode builds a
self-synchronizing stream cipher (see section 2.1.4). The mathematical formulas are the
following:

encryption: c0 = IV , ci = Ek(ci−1) ⊕ mi

decryption: c0 = IV , mi = Ek(ci−1) ⊕ ci

EncryptionKey

IV

Ciphertext #1

Plaintext #1

EncryptionKey

Ciphertext #2

Plaintext #2

Figure 2.4: CFB mode encryption

NOTE: Only the encryption function is required here. A change in the plaintext
propagates forever in the ciphertext and decryption can be parallelized.

OFB Mode

The output feedback mode (OFB) encrypts the previous encrypted block and passes it
as input to the encryption function in the next call. Subsequently this value is XORed
with the plaintext and builds the ciphertext. This transforms a block cipher, running in
OFB mode, into a synchronous stream cipher (see section 2.1.3). If oi is the output of
the encryption function of the i-th iteration, then:

o0 = IV and oi = Ek(oi−1)
ci = mi ⊕ oi and mi = ci ⊕ oi
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EncryptionKey

IV

Ciphertext #1

Plaintext #1

EncryptionKey

Ciphertext #2

Plaintext #2

Figure 2.5: OFB mode encryption

CTR Mode

The counter mode (CTR), like the OFB mode, turns a block cipher into a synchronous
stream cipher. Here a combination of an initialization vector (or nonce) and a counter
is encrypted by the encryption function. The output of the encryption function is then
XORed with the plaintext to generate the ciphertext. The combination of the nonce and
the counter can be an exclusive-or, an addition, or the concatenation of the two values.
The counter must be a function that creates different output at every call, whereby the
output should only repeat itself after a very long time.

EncryptionKey

Nonce

Ciphertext

Plaintext

Counter

EncryptionKey

Nonce

Ciphertext

Plaintext

Counter

Figure 2.6: CTR mode encryption

2.1.2 Stream Ciphers

A stream cipher is a symmetric cipher which encrypts individual characters one at a
time, whereby the keystream transformation varies with time, dependent on the current
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internal state of the cipher. All stream ciphers are attempts to realize a cipher similar
to the One Time Pad (OTP) cipher but without its disadvantages, mentioned below.

The OTP is a symmetric cipher as well. The big difference to other ciphers lies
in the key length and its creation. The big disadvantages of the OTP are the
following: the length must be at least as long as the plaintext, the key shall only
be used once and must be created truly randomly. After key creation, the key is
added to the plaintext (for example by XOR). If these restrictions are fulfilled,
the OTP possesses the characteristic of ‘perfect secrecy’. Another disadvantage
of the OTP additionally to the huge key length is the key transport to the
communication partner.

Stream ciphers use a key and an initialization vector to build a ‘pseudo-random’
keystream before the keystream is XORed with the plaintext. Depending on how a
stream cipher updates its internal state, stream ciphers can be grouped into two classes:
synchronous stream ciphers and self-synchronizing stream ciphers. If the update function
of the internal state is independent of the plaintext or ciphertext message, the cipher
is classified as a synchronous stream cipher. In the contrary case, in which the cipher
updates the inner state depending on either the previous plain- or ciphertext, the cipher
is called a self-synchronizing stream cipher. Often, a stream cipher runs at a higher
speed and has a lower hardware complexity if compared to block ciphers.

2.1.3 Synchronous Stream Ciphers

Using a synchronous stream cipher implies that the sender and the receiver are synchro-
nized. If digits are lost, added or changed during transmission, the synchronization gets
lost and the plaintext or ciphertext cannot be correctly assembled. But there are various
options to retain synchronization. For instance, by tagging the ciphertext with markers
at constant points in the stream or by using offsets to obtain the correct decryption.
The advantage of this mode is the fact that, if a bit is defective, only the corresponding
ciphertext bit is erroneous. The rest of the message is not affected. This property is of
high value if the error rate is very large. But on the other hand, it is more difficult to
prevent such errors without further endeavors. Hence, synchronous stream ciphers are
more vulnerable to active attacks.

2.1.4 Self-Synchronizing Stream Ciphers

Stream ciphers using multiples of the previous N ciphertext bits to compute the keystream
belong to the category of self-synchronizing stream ciphers. The advantage of this
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method is that the receiver automatically synchronizes with the keystream after re-
ceiving of N bits. This type of error handling is much better than the error handling
of synchronous stream ciphers and also leads to better resistance against active attacks.
Self-synchronizing stream ciphers are also susceptible to one bit errors, but here a one
bit error affects not only one bit, but N bits. A frequently-used kind of self-synchronizing
stream ciphers are block ciphers in cipher-feedback mode (CFB).

2.1.5 Linear Feedback Shift Registers

0 1 10 1 10 0 11 0 11 0 1 0 0 1

Output

Feedback

10 0

10

Figure 2.7: Linear Feedback Shift Register

A linear feedback shift register is a shift register whose output bit is XORed with some
other bits of the register and then becomes the last bit of the LFSR again. The initial
value of the LFSR is called the seed or initialization vector and leads to a deterministic
sequence of bytes. If the LFSR is based on an irreducible polynomial and the seed is
non-zero, the LFSR has maximum period, i.e. 2n − 1 (where n denotes the number of
FlipFlops). The LFSR generates a linear stream of bits and therefore a LFSR cannot
be directly used in a stream cipher1.

But there are several methods to bring non-linearity into a LFSR. The first possibil-
ity is the combination of the output of at least two LFSRs to a non-linear combining
function. This can be done by feeding a non-linear boolean function with the outputs
of two or more LFSRs to create a combination generator.

Another way to create non-linearity is the irregular clocking of the LFSR. Normally
a LFSR delivers an output at every clock signal. One attempt to break linearity is the
use of two LFSRs. The first LFSR is clocked regularly and the second is only clocked if
the output of the first one is a ‘1’. If a ‘0’ occurs, the second LFSR repeats the previous
output. To enhance the security level, this output of the second LFSR can be combined
with a third LFSR. This method is called ’stop-and-go’.

Another method is called the ‘shrinking generator’. Here as well two LFSRs are used,
but both are clocked regularly. If the output of the first LFSR is a ‘1’, the output of the
second LFSR is taken as the output. If the first LFSR delivers a ‘0’, there is no output

1There exist algorithms which are able to find the polynomial of a LFSR when an output sequence of
particular length is given (i.e. the Berlekamp-Massey algorithm [10])
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at this state. This method is vulnerable to timing attacks against the second LFSR, but
this hole can be plugged by buffering the output.

There is also a possibility to get by with only one LFSR to bring non-linearity in
an LFSR. Different bits (e.g., 5 or 6) are taken from the actual state of the LFSR and
serve as input to a non-linear filtering function (for instance a 6-to-1 boolean function),
whose output becomes the overall output of the LFSR. This method is called nonlinear
combining function.

2.2 Cryptanalysis

In the sector of cryptanalysis we only take a closer look at the two most important
attacks: linear and differential cryptanalysis. These two attack methods are special
mathematical attacks against block ciphers and stream ciphers. They work if a cipher
runs multiple rounds to execute an encryption/decryption. When designing new block
or stream ciphers the developer(s) should keep these two attacks in mind and, ideally,
the ciphers should be resistant to these attacks.

2.2.1 Linear Cryptanalysis

The linear cryptanalysis is a ‘known-plaintext’ attack. This means, the attacker holds
several plaintexts as well as ciphertexts and uses these pairs to attack the cipher. The
idea behind this kind of attack is the linear approximation of some operations/parts of
the cipher with a linear expression. In most cases a mod 2 -operation like XOR is chosen.
Let A = {a1, a2, ..., am} denote the input of an operation, ai the i-th element of the input
and B = {b1, b2, ..., bn} the output of an operation, bj the j-th element of the output.
Then the expression could look like this:

ai1 ⊕ ai3 ⊕ ai4 ⊕ bj2 ⊕ bj4 ⊕ bj5 = 0

The goal of the linear cryptanalysis is to find linear approximations like the one above,
which exhibit a very low or very high probability of occurrence. In an ideal cipher the
result of the formula above would be 0.5, because the number of zeros and ones is equally
large. If we find now an expression where the result differs from the ideal value 0.5, for
example |0.5 − δ| with bias δ, we are able to do a forecast for some parts of the cipher.

2.2.2 Differential Cryptanalysis

The differential cryptanalysis works similarly to the linear cryptanalysis, but here the
point of attack is not a linear approximation, but instead high probabilities of certain
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occurrences of differences of inputs and outputs of an operation (like the round function
per instance). Let X = {x0, x1, ..., xm} denote the input and Y = {y0, y1, ..., yn} the
output of an operation. Let x’ and x” be two inputs and y’ and y” the corresponding
outputs. Then ∆(X) = (x′⊕x′′) is the input difference and ∆(Y ) = (y′⊕y′′) the output
difference. In an ideal, completely randomized cipher the probability that given an input
difference ∆(X), an output difference ∆(X) appears is 0.5n where n denotes the bit
length of the input/output. If we are able to find input differences and corresponding
output differences which deviate from the probability 0.5n, we can make predictions
about the input or the output bits, whatever we are searching for.
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3 Focused eSTREAM Profile I

Candidates

In this chapter we provide the specifications for the implemented ciphers in this work. For
comparison, we implemented the byte-oriented AES (Advanced Encryption Standard)
in C, taken from Gladman [15], and a fast AES Assembly language version. Hence we
describe the AES as well.

3.1 Introduction to ECRYPT/eSTREAM

ECRYPT (European Network of Excellence for Cryptology) is a European research
initiative launched on February 1st, 2004. The project has an duration of four years.
The objective is “to intensify the collaboration of European researchers in information
security, and more in particular in cryptology and digital watermarking”.

One of the projects of ECRYPT is called eSTREAM, which aims on identifying “new
stream ciphers that might become suitable for widespread adoption”. ECRYPT launched
the call for papers in November 2004. This call divided the eSTREAM candidates into
two groups, or better two profiles:

• Profile 1: ‘Stream ciphers for software applications with high throughput require-
ments.’

• Profile 2: ‘Stream ciphers for hardware applications with restricted resources such
as limited storage, gate count, or power consumption.’

The timeline of the project is divided into three main parts called phases. Phase 1
started immediately after the deadline for submission in April 2005. Phase 1 aimed
on general analysis of all (34) submissions with the goal of determining a subset of
interesting candidates to build the Phase 2 cipher list. Phase 1 ended in February 2006
and 5 months later Phase 2 began. The candidates of Phase 2 were scrutinized using
criteria like performance, resistance against improved attacks and, of course, deeper
cryptanalysis.

The software candidates in Phase 2 are:
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• Phase 2
◦ ABC
◦ CryptMT
◦ DICING
◦ NLS
◦ Polar Bear
◦ Rabbit

• Focus Phase 2
◦ Dragon
◦ HC-256
◦ LEX
◦ Phelix
◦ Py
◦ Salsa20
◦ Sosemanuk

The current active Phase 3 started in April 2007, but when this thesis was created,
Phase 2 was the actual phase. Therefore, in this work we evaluate performance aspects
of the stream ciphers that were in the focus of Phase 2 and Profile 1 and not broken, yet.
In detail, this work covers Dragon, HC-128, LEX, Salsa20, and Sosemanuk. Because of
reported key recovery attacks we have not included Py/Pypy [25] or Phelix [24] in our
testing framework.

NOTE: The ciphers that are described in the following sections are ordered alphabet-
ically.

3.2 AES

The AES, also known as Rijndael, is a block cipher and the official predecessor of DES
(Data Encryption Standard). The developers of AES are two Belgian cryptographers
Joan Daemen and Vincent Rijmen. ‘Rijndael’ is a combination of the names of the
inventors. The AES version we use (AES-128) is not exactly Rijndael, because Rijndael
supports a larger range of key sizes, whereby AES-128 only allows use of a 128 bit key.
The AES uses a block size of 128 bits and delivers an 128 bit output.

3.2.1 Workflow of AES

The workflow of the AES can be well described by the following pseudo code:

• Key expansion
• First round
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◦ AddRoundKey()
• Encryption rounds (repeat 10 rounds)

◦ SubBytes()
◦ ShiftRows()
◦ MixColumns()
◦ AddRoundKey()

• Last round
◦ SubBytes()
◦ ShiftRows()
◦ AddRoundKey()

Figure 3.1: AES: Graphical round overview (taken from [16])

Figure 3.1 gives a graphical overview of one AES round.
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3.2.2 Key expansion

First some declarations: r = 10 is the number of rounds, b = 128 is the block size (4
words of size 32 bit). Now let us take a look at the key expansion. The key must be
extended to (r + 1) subkeys. The subkeys need to have the same size as the block size.
Thus the key must be expanded to the size of b ∗ (r + 1) bits. The keys will be arranged
in 2-dimensional arrays with 4 rows and 4 columns, so that a single entry has a size of
one byte. The first subkey is the key itself. The remaining subkeys are computed in the
following manner:

To compute the first column (wi) of the next subkey, the last column of the parent
subkey (wi−1) is required. The values of this column are processed by the RotWord()
function and after that each byte of the column is replaced by the corresponding value
in the S-box. This column wi−1 is then XORed with the column wi−4. For words in
positions that are a multiple of b/wordsize (4,8,12,...), an additional XOR with the rcon
table must be executed. The rcon table is a table containing pre-calculated values (for
details on the mathematical background refer to [22] or [8]). The next three columns
follow the same construction pattern but without the application of the substitution
function, the table lookup in the rcon table, and the RotWord() function.

S0,0

S3,0

S2,0

S1,0

S0,1

S3,1

S2,1

S1,1

S0,2

S3,2

S2,2

S1,2

S0,3

S3,3

S2,3

S1,3

Wi-1 WiWi-4

Original AES key

...

Subkey #1 Subkey #2 Subkey #r+1

Figure 3.2: AES: Key schedule

3.2.3 AddRoundKey

The AddRoundKey function combines the current state with the corresponding subkey.
It is a XOR between the bytes of the state and the subkey.
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3.2.4 SubBytes

The SubByte function is the only non-linear function in the AES. Each byte in the (4×4)
array is updated by an 8-bit S-box. This S-box is derived from the multiplicative inverse
of F28 with proven good non-linearity properties. The S-box consists of 16 rows and 16
columns. Each byte of the state has two digits in hexadecimal notation. For instance,
the actual byte has the value ’0x73’ = 115. The corresponding value in the S-box can
be found in the 3rd row and 7th column. In our case we find ’0x8F’ = 143.

Figure 3.3: AES: SubBytes() function (taken from [8])

3.2.5 ShiftRows

The ShiftRows function affects the rows of the state. The i-th row will be rotated i
byte(s) to the left.

Figure 3.4: AES: ShiftRows() function (taken from [8])
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3.2.6 MixColumns

In the MixColumns function the four bytes of each column are combined using an in-
vertible linear transformation. At each step of the MixColumns function four bytes (one
column) are used as input and each of these four bytes affects all four output bytes.
The MixColumns function can be viewed as a matrix multiplication. Each column can
be treated as a polynomial over F28 , which is then multiplied with a fixed polynomial
c(x) = (3x3 + x2 + x + 2) modulo (x4 + 1).

Figure 3.5: AES: MixColumns() function (taken from [8])

3.3 Dragon

Dragon is a stream cipher using a single word based non-linear feedback shift register and
a non-linear filter function with memory. Its developers are K. Chen, M. Henricksen,
W. Millan, J. Fuller, L. Simpson, E. Dawson, H. Lee and S. Moon. Dragon can be
executed either with a key and IV-size of 128 bits or a key and IV-size of 256 bits. It
produces a 64 bit keystream. The core of Dragon consists of two (8 × 32)-bit S-boxes
and makes frequent use of its update function labeled F. Furthermore Dragon exhibits
a large NLFSR (Non-Linear Feedback Shift Register) of 1024 bits and a 64-bit counter,
named M.

3.3.1 The update function F

The update function of Dragon is an essential part of the cipher because it is called at
two positions during one regular cycle of the whole cipher, more precisely in the key
setup and during the keystream generation. It takes 192 bits as input and provides 192
bits of output, ordered in six 32 bit words.
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Figure 3.6: Dragon: Update function F (taken from [14])

In Figure 3.6 the input parameters are named a, b, c, d, e, f and the output words
are denoted a’, b’, c’, d’, e’ and f’. The update functions makes use of six component
functions overall: G1, G2, G3, H1, H2 and H3 (described in 3.3.2). The G and H functions
are the non-linear components of the cipher. Before and after the G and H functions,
several binary and modular additions are executed. The F function can be divided into
three phases: the pre-mixing, the substitution (G and H functions) and the post-mixing
phase. Each phase is developed in such a way that parallelization is possible. This is
shown in Figure 3.7. Here a ⊕ stands for an XOR and ⊞ stands for addition modulo
232.

Figure 3.7: Dragon: Update function F (graphically illustrated) (taken from [14])
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3.3.2 G and H functions

The G and H functions are constructed as a combination of the two (8× 32)-bit S-boxes
S1 and S2. Hence this combination composes virtual (32 × 32)-bit S-boxes. The G
functions use three times the S1 S-box and one time the S2 S-box. The H functions
use three times the S2 S-box and one time the S1 S-box. Each byte of the 32 bit
input value x is taken to determine the value at the corresponding position in the S-box
(x = x0‖x1‖x2‖x3). The G and H functions are defined as follows:

G1(x) = S1(x0) ⊕ S1(x1) ⊕ S1(x2) ⊕ S2(x3)
G2(x) = S1(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S1(x3)
G3(x) = S1(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S1(x3)
H1(x) = S2(x0) ⊕ S2(x1) ⊕ S2(x2) ⊕ S1(x3)
H2(x) = S2(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S2(x3)
H3(x) = S2(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S2(x3)

3.3.3 Key and IV initialization

Figure 3.8: Dragon: Key initialization function (taken from [14])

The initialization of the internal state of Dragon follows a simple strategy. It’s nothing
but many concatenations of the (private) key and the (public) initialization vector,
denoted as k and iv. The 1024 bit internal state is divided into eight 128 bit words.
These words are labeled W0 to W7. The F function is used in the initialization process
several times. More precisely, the F function is called 16 times during initialization.
Figure 3.8 shows the initialization process. Here x̄ denotes the complement of x, and x’
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stands for a modified x whereby the upper and the lower halves of x are swapped. The
authors recommend a rekeying every 264 bits of generated keystream.

3.3.4 Keystream generation

Figure 3.9: Dragon: Keystream generation function (taken from [14])

Dragon possesses a NLFSR of 1024 bit size. This value is divided into thirty-two
32-bit values called B0 to B31. At each round six words from the internal state are taken
to feed the F function. The words of the first round are taken from the positions 0, 9,
16, 19, 30 and 31 and every round these values are scaled down by 2 (mod 32). So the
words of the second round are 30, 7, 14, 17, 28 and 29 and so on. Furthermore, the
64-bit memory counter M acts as a counter during keystream generation. The counter M
is initialized during the initialization process. After 64 bits of keystream are generated
the output is called k and B and M are updated.

3.4 HC-128

The stream cipher HC-128[23] is developed by Hongjun Wu working at the Katholieke
Universiteit in Leuven, Belgium. The main part of HC-128 is made up of two secret
tables with 512 32-bit entries each. At every step of the cipher one element from one
of these two tables is updated by a non-linear feedback function. So within 1024 steps
both tables (that means the internal state of the cipher) are updated completely. The
output is a 32-bit word, which is generated at each step by the non-linear output filtering
function.

3.4.1 Specification of the cipher

First we describe some operations and declarations which are necessary to understand
the following details:
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+ :Addition modular 232

⊟ :Subtraction mod 512 = 29

⊕ :Bitwise exclusive OR
‖ :Concatenation
>> :Right shift operator
<< :Left shift operator
>>> :Right rotation operator
<<< :Left rotation operator

Table 3.1: HC-128: Operations used by HC-128

P :an array with 512 32-bit entries. Single elements are written P[i], whereby 0 ≤ i ≤ 511
Q :an array with 512 32-bit entries. Single elements are written Q[i], whereby 0 ≤ i ≤ 511
K :the 128-bit secret key
IV :the 128-bit public injection vector
s :the generated keystream from HC-128

There exist six relevant functions in HC-128. h1 uses the P-array as S-box, h2 uses
the Q-array.

f1(x) = (x >>> 7) ⊕ (x >>> 18) ⊕ (x >>> 3)
f2(x) = (x >>> 17) ⊕ (x >>> 19) ⊕ (x >>> 10)

g1(x, y, z) = ((x >>> 10) ⊕ (z >>> 23)) + (y >>> 8)
g2(x, y, z) = ((x <<< 10) ⊕ (z <<< 23)) + (y <<< 8)

h1(x) = Q[x0] + Q[256 + x2]
h2(x) = P [x0] + P [256 + x2]

Here x is made up of 4 one byte values: x = x3‖x2‖x1‖x0 whereby x0 denotes the least
significant byte.

3.4.2 Initialization process

During the initialization process the two large arrays must be initialized. This is done
in several steps.



3.4 HC-128 25

1. A new array called Wi (0 ≤ i ≤ 1279) must be filled by the expanded key and IV.

Wi =











Ki 0 ≤ i ≤ 7

IVi−8 8 ≤ i ≤ 15

f2(Wi−2) + Wi−7 + f1(Wi−15) + Wi−16 + i 16 ≤ i ≤ 1279

2. After that initialization, the arrays P and Q are updated with the values in the
W-array.

P [i] = Wi+256 for 0 ≤ i ≤ 511
Q[i] = Wi+768 for 0 ≤ i ≤ 511

3. HC-128 is executed for 1024 steps and the output words replace the table entries
as follows:

for i = 0 to 511, do
P [i] = (P [i] + g1(P [i ⊟ 3], P [i ⊟ 10], P [i ⊟ 511])) ⊕ h1(P [i ⊟ 12]);

for i = 0 to 511, do
Q[i] = (Q[i] + g2(Q[i ⊟ 3], Q[i ⊟ 10], Q[i ⊟ 511])) ⊕ h2(Q[i ⊟ 12]);

3.4.3 Keystream generation

During the keystream generation one entry of one of the arrays P or Q is updated. Each
of the S-boxes is used to generate 512 bits of output and then the S-box is updated in
the next 512 steps. Below, the keystream generation algorithm of HC-128 is given:

i = 0;
repeat until plaintext is encrypted
{

j = i mod 512;
if (i mod 1024) < 512
{

P [j] = (P [j] + g1(P [j ⊟ 3], P [j ⊟ 10], P [j ⊟ 511]));
si = h1(P [j ⊟ 12]) ⊕ P [j];

}
else
{

Q[j] = (Q[j] + g2(Q[j ⊟ 3], Q[j ⊟ 10], Q[j ⊟ 511]));
si = h2(Q[j ⊟ 12]) ⊕ Q[j];

}
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end-if
i++

}

3.5 LEX

The LEX (Leak EXtraction) stream cipher is a modification of the AES Block Cipher
[12] and is developed by Alex Biryukov. It uses internal states of each round to create
the keystream. Amongst the researched ciphers, it is the one with the smallest output
size: 16 bits. For further information regarding AES, refer to [8] or see section 3.2 above.
The standard version of LEX uses a 128-bit key and a 128-bit initialization vector.

The setup phase consists of a key setup, followed by the IV initialization. The key
setup of LEX is exactly the same as the key setup of AES. The IV initialization is
implemented by AES-encrypting the IV under the secret key K:

S = AESK(IV ).

This value S together with the secret key K forms the internal state of LEX. S is
updated every round while K remains unchanged. The developer of LEX approves to
change the key every 500 AES encryptions to enhance the security level.

Figure 3.10 provides an overview of LEX.

Figure 3.10: LEX: Overview (taken from [12])

The encryption of LEX is the repeated extraction of four certain bytes from the output
of each of the sixteen AES rounds. Every round of AES produces 128 bit intermediate
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Figure 3.11: LEX: Intermediate round values (128 bit) (taken from [12])

values. In Figure 3.11 the intermediate values are shown in a squared form and each value
possesses an index, derived from its position in the square (row- and column-number).

The developer of LEX proposes to use the bytes b0,0, b2,0, b0,2, b2,2 (see figure 3.12) at
every odd round and the bytes b0,1, b2,1, b0,3, b2,3 (see figure 3.13) at every even round.
Only four steps are necessary to extract these 32 bits from the two 32 bit variables t0
and t2:

out32 = ((t0&0xFF00FF ) << 8) ⊕ (t2&FF00FF ).

In the formula above ti is a row of four bytes: ti = (bi,0, bi,1, bi,2, bi,3). There is no need
to use any filter function before the bytes are sent to the output.

Figure 3.12: LEX: Extraction on odd rounds (taken from [12])

NOTE: We encountered a discrepancy between the specification and the implementa-
tion of LEX. In the specification Biryukov suggests to use the bytes b0,0, b2,0, b0,2, and
b2,2 for extraction in odd rounds and the bytes b0,1, b2,1, b0,3, and b2,3 for extraction in
even rounds. In contrast to the specification, the implementation indicates the bytes
b1,1, b3,1, b1,3, and b3,3 for extraction in even rounds. The test vectors fit to the bytes
extracted by the implementation. An email (sent to Biryukov) including a request to
clarify the situation stayed unanswered.
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Figure 3.13: LEX: Extraction on even rounds (taken from [12])

3.6 Salsa20

Salsa20 is a stream cipher developed by Daniel J. Bernstein. To be accurate, the cipher
is actually a hash algorithm (hashing of the key, nonce and a block number) with a
subsequent XOR of the hash value and the plaintext. Salsa20 takes 64 bytes as input,
produces 64 bytes of output and operates on 32-bit words. Only three basic operations
are needed by the different functions in Salsa20: addition mod 232 (denoted as +),
exclusive OR of two words (denoted as ⊕) and left rotation of word x by n bytes
(denoted as x <<< n).

3.6.1 The quarterround function

The most important part of Salsa20 is the quarterround function. Nearly all subsequent
functions use the quarterround function, and consist simply of multiple calls of the
quarterround function. The function takes 4 words as input and delivers 4 words as
output. If we name the input y = (y0, y1, y2, y3) and the output is designated as z =
(z0, z1, z2, z3), then the quarterround function can be defined as follows:

z1 = y1 ⊕ ((y0 + y3) <<< 7)
z2 = y2 ⊕ ((z1 + y0) <<< 9)
z3 = y3 ⊕ ((z2 + z1) <<< 13)
z0 = y0 ⊕ ((z3 + z2) <<< 15)

Table 3.2: Salsa20: The quarterround function

3.6.2 The rowround function

The rowround function takes 16 bytes as input and delivers 16 bytes as output. The input
is called y = (y0, y1, ..., y15), the output is named z = (z0, z1, ..., z15) and the function is
defined as:
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(z0, z1, z2, z3) = quarterround(y0, y1, y2, y3)
(z5, z6, z7, z4) = quarterround(y5, y6, y7, y4)

(z10, z11, z8, z9) = quarterround(y10, y11, y8, y9)
(z15, z12, z13, z14) = quarterround(y15, y12, y13, y14)

Table 3.3: Salsa20: The rowround function

3.6.3 The columnround function

The columnround function takes 16 bytes as input and delivers 16 bytes as output.
The input is called x = (x0, x1, ..., x15), the output is named z = (z0, z1, ..., z15) and the
function is defined as:

(z0, z4, z8, z12) = quarterround(x0, x4, x8, x12)
(z5, z9, z13, z1) = quarterround(x5, x9, x13, x1)

(z10, z14, z2, z6) = quarterround(x10, x14, x2, x6)
(z15, z3, z7, z11) = quarterround(x15, x3, x7, x11)

Table 3.4: Salsa20: The columnround function

3.6.4 The doubleround function

The doubleround function takes 16 words as input and delivers 16 words as output.
The doubleround function first calls the column round function followed by a call of the
rowround function.

doubleround(x) = rowround(columnround(x))

3.6.5 The littleendian function

The littleendian functions simply swaps the byteorder of a 4-byte word. If b = (b0, b1, b2, b3)
then littleendian(b) = b0 + 28 b1 + 216 b2 + 224 b3 = (b3, b2, b1, b0).

3.6.6 The Salsa20 hash function

A short introduction to hash functions:
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Hash functions use reproducible methods to shrink data of arbitrary length to
a fixed length. Hash functions must fulfill 3 important properties:

• Preimage resistant: Given a hash value h it should be very difficult to
find the corresponding message m, such that h = hash(m).

• Second preimage resistant: Given a message m1 it should be hard to find
a message m2 (different from m1) with hash(m1) = hash(m2).

• Collision resistant: Given a hash(m1) it should be hard to find a message
m2 such that hash(m1) = hash(m2).

The Salsa20 hash function takes 64 bytes as input and delivers a 64-byte sequence as
output.

Salsa20(x) = x + doubleround10(x).

Let us denote x as (x[0], x[1], ..., x[63]) then

x0 = littleendian(x[0],x[1],x[2],x[3])
x1 = littleendian(x[4],x[5],x[6],x[7])
x2 = littleendian(x[8],x[9],x[10],x[11])

...
x15 = littleendian(x[60],x[61],x[62],x[63])

Define z = (z0, z1, ..., z15) = doubleround10((x0, x1, ..., x15). Then Salsa20(x) is the
concatenation of:

littleendian−1(z0 + x0)
littleendian−1(z1 + x1)
littleendian−1(z2 + x2)
...
littleendian−1(z15 + x15)

3.6.7 The expansion function

The input k of this function can be a 32-byte or a 16-byte sequence, the input n must
be a 16-byte value. The output of Salsa20k(n) is then a 64-byte value.

Define σ0, σ1, σ2 and σ3 as 4-byte values, k0, k1 and n as 16-byte values then
Salsa20k1,k2

(n) = Salsa20(σ0,k0,σ1,n,σ2,k1,σ3). Define τ0, τ1, τ2 and τ3 as 4-byte val-
ues, k and n as 16-byte values then Salsa20k(n) = Salsa20(τ0,k,τ1,n,τ2,k,τ3).
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3.6.8 The encryption function

Define

k = a 16-byte or 32-byte value (secret key),
v = a 8-byte value (public initialization vector),
m = an l-byte sequence (plaintext message),

then Salsa20k(v) ⊕ m is the corresponding encrypted ciphertext message. In the
opposite case m is the ciphertext and Salsa20k(v) ⊕ m is the decrypted plaintext message.

3.7 Sosemanuk

The Sosemanuk [9] stream cipher uses basic design principles from the stream cipher
Snow 2.0 [17] and the partly modified block cipher Serpent [19] and is developed by
C. Berbain, O. Billet, A. Canteaut, N.Courtois, H. Gilbert, L. Goubin, A. Gouget, L.
Granboulan, C. Lauradoux, M. Minier, T. Pornin and H. Sibert. It is based on 32-bit
words and uses a 128-bit size for the key and the IV. The cipher consists of a 10-word
LFSR and a 2-word FSM. Sosemanuk could be regarded as an improvement of Snow
2.0, because is uses a faster IV Setup and also requires a reduced amount of static data
which leads to a better performance and a gain in security. The key length is variable
between 128 and 256 bit, but a larger key (≥ 128 bit) is no warranty for an increase
of security. The key setup procedure of Sosemanuk is based on a modified version of
Serpent where only 24 rounds are executed instead of 32 in the original cipher.

3.7.1 Serpent and its derivatives

Serpent is a block cipher and was a candidate for the AES. Serpent operates on 128 bit
blocks which are split into four 32 bit blocks (in Little Endian (LE) mode). There are
two functions derived from the original cipher called Serpent1 and Serpent24.

While a Serpent round consists of a subkey addition (bytewise exclusive OR), a S-box
application and a linear bijective transformation, the Serpent1 function only consists of
the S-box application. More precisely, the third S-box S2 of Serpent is used. Serpent1
needs four 32 bit words as input and delivers four 32 bit words as output.

Instead of the 32 rounds of the full Serpent version, Serpent24 is reduced to 24 rounds.
The 24th round of Serpent4 is equivalent to the 32th round of Serpent. The only
difference is the fact that Serpent24 contains the linear transformation and the XOR
(instead of the 32th and 33th subkey, the 24th and 25th are used). Serpent24 needs only
the first 25 subkeys of the Serpent key schedule. Expressed as a formula:
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R23(X) = L(Ŝ23(X ⊕ K̂23)) ⊕ K̂24

3.7.2 The LFSR

Now a short description of the underlying finite field of the LFSR is given. Most of the
internal state of Sosemanuk is held in a LFSR that contains ten elements of F232 . This
is the field with 232 elements. The representation of the elements of F232 is exactly the
same as in Snow 2.0. Here is a short summary.

F2 is the finite field with 2 elements. Let β be a root of the primitive polynomial:

Q(X) = X8 + X7 + X5 + X3 + 1

in F2. Then F28 is the quotient F2[X]/Q(X). That means each element of F28 can
be illustrated as βk for some integers k (0 ≤ k ≤ 254). So any element in F28 can be
identified with an 8-bit integer on the basis of the following bijection:

φ: F28 → 0, 1, ..., 255

x =
∑

7

i=0
xiβ

i 7→ x =
∑

7

i=0
xi2

i

where each xi is either 0 or 1. Now let α be a root of the primitive polynomial:

P (X) = X4 + β23X3 + β245X2 + β48X1 + β239

on F28 [X]. The field F232 is now defined as the quotient F28 [X]/P (X).

Figure 3.14: Sosemanuk: The LFSR of Sosemanuk (taken from [9])

This section is important because the LFSR operates over these elements of F232 . At
time t = 0 the LFSR is filled with the values s1 to s10. That is called the initial state.
From now on, each new value is computed with the following recurrence formula:

st+10 = st+9 ⊕ α−1st+3 ⊕ αst, ∀t ≥ 1
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After that the register is shifted. The LFSR possesses the following feedback polyno-
mial:

π(X) = αX10 + α−1X7 + X + 1 ∈ F232 [X]

3.7.3 The FSM

The FSM consists of two 32-bit registers R1 and R2 which realize a 64 bit memory. At
every call, it takes as input some words from the LFSR and then updates the memory
and delivers 32 bits as output. For time t ≥ 1 the FSM works as follows on the LFSR
state:

FSMt : (R1t−1, R2t−1, St+1, St+8, St+9) 7→ (R1t, R2t, ft).

The single operations are defined as follows:

R1t = (R2t−1 + mux(lsb(R1t−1), st+1, st+1 ⊕ st+8)) mod 232

R2t = Trans(R1t−1)
ft = (st+9 + R1t mod 232) ⊕ R2t

where mux(c,x,y) is the same as: ‘choose x if c = 0, choose y if c = 1’ and lsb(x)
denotes the least significant bit of x. The Trans function on F232 is defined by:

Trans(z) = (M × z mod 232) ≪ 7

at which M is a given constant with the value 0x54655307. These are the first ten
decimals of the constant π in hexadecimal notation. ≪ stands for a bitwise rotation of
a 32 bit value (in the case above: by 7 bits).

The last 4 outputs of the FSM are grouped and Serpent1 is applied to these groups.
This groups will be combined (by XOR) with the corresponding output values from the
LFSR to produce the final output bytes:

(zt+3, zt+2, zt+1, zt) = Serpent1 (ft+3, ft+2, ft+1, ft, ) ⊕ (st+3, st+2, st+1, st, )

3.7.4 Key Setup

The key setup of Sosemanuk is similar to the Serpent24 key schedule. It produces 25
subkeys with a size of 128 bit, that are 100 32-bit words. The key length may vary
from 1 to 256 bits but because Sosemanuk aims at 128-bit security a key length smaller
than 128 bit is not allowed. Adding further bits to the 128 bit key is possible up to the
maximum, but using a longer key does not necessarily provide more security.
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Figure 3.15: Sosemanuk: Overview (taken from [9])

3.7.5 IV Injection

The IV has a size of 128 bits. This value is used as input to the SERPENT24 function,
which is already initialized by the key schedule. For the IV injection only the outputs
of the 12th, 18th and 24th round are used. These values are marked as follows:

• The output of the 12th round: (Y 12
3 , Y 12

2 , Y 12
1 , Y 12

0 )

• The output of the 18th round: (Y 18
3 , Y 18

2 , Y 18
1 , Y 18

0 )

• The output of the 24th round: (Y 24
3 , Y 24

2 , Y 24
1 , Y 24

0 )

These values initialize the internal state of SOSEMANUK in the following manner:

(s7, s8, s9, s10) = (Y 12
3 , Y 12

2 , Y 12
1 , Y 12

0 )
(s5, s6) = (Y 18

1 , Y 18
3 )

(s1, s2, s3, s4) = (Y 24
3 , Y 24

2 , Y 24
1 , Y 24

0 )
R10 = Y 18

0

R20 = Y 18
2
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4.1 Microcontroller

Nowadays in almost every home you will find at least one or more personal computer
systems. But it is likely that you can find ten times more embedded systems in your
own household as you possess personal computers. For instance, microcontrollers can
be found in nearly every electrical device including washing machines, microwaves, tele-
phones, toasters, digicams, and so on. In a typical mid-range automobile, 50 or more
microcontrollers are installed to control, monitor and regulate the settings of the motor
or other devices. In the year 2002 only 2% of all worldwide produced micro computers
were attached to general purpose computer systems, the remaining 98% were used in
embedded applications.

A microcontroller can be described as a ‘computer on a chip’. All necessary compo-
nents are included on one single chip: the processor (the CPU), non-volatile memory
for the program (ROM, EPROM, EEPROM or flash), volatile memory for input and
output (RAM), a clock generator (quartz timing crystal), and an I/O control unit. Mi-
crocontrollers do not need an external address or a data bus, because all components are
integrated on the same chip as the CPU. Microcontrollers are very restricted in resources
like SRAM and flash memory.

If the microprocessor is dedicated to performing one or a few special tasks, the whole
system is called an embedded system. An embedded system does not possess the usual
I/O units like a keyboard, a screen, or a printer. It runs in a restricted environment
which is optimized according to the requirements that are to be fulfilled.
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4.2 Atmel

The Atmel Corporation is a producer of semiconductors with about 8,000 employees.
Founded in 1984 by George Perlegos, it has grown to an industry leader in security
systems like smart cards. Atmel produces microcontrollers, radio frequency devices,
EEPROM, flash memory, and scores of application-specific devices. Amongst other
things Atmel produces its own AVR architecture and the ATmega series. Atmel holds
a great intellectual property library with over 1, 300 analog and digital patents and on
account of this it is able to provide electronics systems manufacturers with complete
system solutions. Annual revenue in the year 2005 aggregates to $ 1, 676 million.

4.3 ATmega Series

An unproven rumor says that the abbreviation AVR stands for Alf-Egil Bogen and
Vegard Wollan RISC (Reduced Instruction Set Computer), the two founders of Atmel
Norway. Some others say the acronym stands for Advanced Virtual RISC, but Atmel
itself says that the name AVR is not an acronym and has no further meaning.

AVR microprocessors are a family of 8-bit RISC microcontrollers. The individual
device classes differ in SRAM and flash memory size, as listed in Table 4.1. Its memory
is organized as a Harvard architecture with a 16-bit word program memory and an 8-bit
word data memory. Most of the microcontroller’s instructions are one-cycle. All of the
microcontrollers listed in Table 4.1 can be clocked at up to 16 MHz.

Due to its easy usage, its low power consumption, and its comparatively low price,
the AVR microcontrollers have reached a high popularity in embedded system design.

Table 4.1: Specification of the most popular AVR devices (ATmega family)

Device Flash [kbyte] SRAM [byte]
ATmega8 8 1024
ATmega16 16 1024
ATmega32 32 2048
ATmega64 64 4096
ATmega128 128 4096
ATmega1281 128 8192
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The AVR microcontrollers do not require external memory because all memory types
(flash memory, EEPROM and SRAM) are located on the same chip as the CPU. The
non-volatile flash memory is used to store the program instructions. Each instruction
takes 16 bits for execution, divided into an 8-bit opcode followed by 8 bits of data or
an address (although all devices of the ATmega series are 8-bit microcontrollers). The
most important characteristics of the AVR family are:

• 130 to 135 instructions (most of them require only 1 cycle),

• 32 general purpose working 8-bit registers (3 of them could be used as 16-bit
pointers),

• 8k to 128k bytes of in-system self-programmable flash memory with an average
endurance of 10k write/erase cycles,

• 0.5k to 4k bytes of EEPROM with an average endurance of 100k write/erase cycles,

• 1k to 128k bytes of internal SRAM,

• 23 to 54 programmable I/O lines,

• very small power consumption (for example an ATmega16 at 1MHz, 3V, 25◦C):
◦ in active state: 1.1 mA,
◦ in idle state: 0.35mA,
◦ in power-down state: < 1µA.
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5 Framework Set-Up and Tool

Chain

5.1 Porting to AVR Microcontrollers

Initially we simply ported the published eSTREAM API implementations into a C-
version that runs on one of the devices of the ATmega series. Afterwards we imple-
mented these versions in Assembly language. The eSTREAM ciphers come with a set
of associated files according to the eSTREAM API. In order to reduce the size of the
code and to solve the dependencies we move only the parts of each file that are required
for execution into one cipher -avr.c file. One problem in porting code to an AVR micro-
controller is the limited amount of SRAM. A solution for saving valuable SRAM lies in
moving S-boxes or comparable big static data arrays into flash memory. We accomplish
that by using the progmem construction. It is first required to include the necessary
.h-file by writing #include <avr/pgmspace.h> at the beginning of the .c-file. Subsequently
the static tables can be saved in flash memory using the PROGMEM command. For
instance, in the case of the LEX cipher this may look like this:
stat ic const u32 Te0 [ 2 5 6 ] PROGMEM = {

2 0xc66363a5U , 0xf87c7c84U , 0xee777799U , 0xf67b7b8dU , . . .

Reading of the values (in this case 32-bit) can be done by using the pgm_read_dword
command. To simplify the usage of this command and to spare paperwork we defined a
macro called RFF (Read From Flash):

/∗ Spe c i a l d e f i n e cause o f progmem ∗/
2 #define RFF(v ) pgm_read_dword(&v) /∗ RFF stands f o r ReadFromFlash ∗/

Another issue is the different integer variable size in a 32-bit-oriented environment and
the 8-bit-oriented environment of an AVR. Thus all variables used have to be adapted
to the standard integer sizes of the AVR microcontroller. All ciphers use the u8-u32
definitions. So we are able to force the using of the AVR standard integer sizes by
redeclaring the u-types:
#define u8 uint8_t

2 #define u16 uint16_t
#define u32 uint32_t

Additionally the file stdint.h must be included to enable the compiler to understand
what uintX_t is.
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5.2 Development Tools

For the software development we used the tools ‘WinAVR’ [5] and ‘AVR Studio 4’ [3],
which are described in the following sections.

5.2.1 WinAVR

WinAVR is a suite of executable, open source software development tools for the Atmel
[1] AVR series of RISC microprocessors hosted on the Windows platform. WinAVR
contains avr-gcc (compiler), avrdude (programmer), avr-gdb (debugger) and a tool for
automatic makefile generation. There is also included an editor named ‘Programmers
Notepad’ (PN). The version of PN, included in the WinAVR suite, comes with a built-in
to compile the C-code by pressing a hot-key. But before this can be done, the gcc-
compiler needs a makefile with specified instructions and options to compile the C-file.
This can be easily done with the makefile generator Mfile, developed by Jörg Wunsch
[4].

Figure 5.1: Snapshot of Mfile

Mfile comes with a very good standard template for the makefile. One merely has to
make some important settings as shown in the following listing:

# MCU name
2 MCU = atmega128

# Target f i l e name ( without extens i on ) .
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4 TARGET = dragon−avr
# L i s t C++ source f i l e s here . (C dependenc ies are automat i ca l l y generated . )

6 CPPSRC = dragon−avr . cpp

NOTE: Although the CPPSRC directive must be defined, the corresponding C++
file does not actually need to exist. The name of the target file must be written in lower
case. If not done in this way, the compiler does not work and displays error messages.

There is another very useful tool named avrsizex [2]. This tool shows a short summary
of the used memory of flash memory, SRAM and EEPROM in percentages. In the case
of the Dragon cipher, additional to

Size after :
2 dragon−avr . e l f :

section size addr

4 . data 40 8388864
. t ex t 57434 0

6 . bss 384 8388904
. n o i n i t 0 8389288

8 . eeprom 0 8454144
. stab 42348 0

10 . s t a b s t r 3364 0
Total 103570

we get the following output:

Flash SRAM EEPROM

2 −−−−− −−−− −−−−−−

46% 10% 0%

Last but not least, we have to do a further little tweak to have the ability to watch
the seperate parts of structs in AVRStudio later on.

Figure 5.2: Generation of project tool “extended coff”
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To accomplish this we have to add a project tool with special parameters to PN, which
creates an extended coff -file [20]. This file format writes additional debug information
in the output file, considerably more than can be found in a elf -file [21].

Once the code compiles without errors in PN, we use the output file (extcoff) from
WinAVR to execute the code in ‘AVR Studio 4’ and simulate it on the chosen AVR
device.

NOTE: It must be pointed out that SRAM size as provided by WinAVR includes only
static variables that are initialized at the beginning. Because of this, WinAVR returns
a smaller value than the actual required SRAM size. In particular, the cipher specific
structure ECRYPT_ctx is not included in this value, because it is initialized during
runtime and is non-static. To provide a better statement on actual SRAM size the byte
size of the cipher specific structure ECRYPT_ctx is calculated manually and added to
the size of the static variables.

5.2.2 AVRStudio

AVR Studio 4 is an Integrated Development Environment (IDE) for writing and debug-
ging AVR applications on the Windows platform. We are able to use all the functions
familiar from common debugging tools such as watching registers and variables. At ev-
ery state we can obtain the number of CPU cycle counts, which enables us to measure
clock cycles for benchmarking throughput. For the implementations in C-language, AVR
Studio 4 is only used to simulate the AVR device. For the Assembly implementations,
AVR Studio 4 is also used as development environment. The Assembly code is AVR
Assembly code, not gcc-Assembly code, but can be easily transformed into it.

Figure 5.3: Snapshot of AVR Studio 4 - watching the struct ctx of Dragon
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As we use the extended coff files to simulate the ciphers on the AVR devices, we can
observe the values of parts of a struct. This is shown in Figure 5.3.

5.3 Configuration for Testing

Here we explain the general structure of the performance evaluation based on the
ECRYPT API functions for both cases, C and Assembly language. The exact con-
figuration will be shown in the chapters describing the implementation of the ciphers.

5.3.1 C language configuration

The test sequence in C language is the following (all data in pseudo code):

ECRYPT_init()

ECRYPT_keysetup(key)

ECRYPT_ivsetup(iv)

ECRYPT_process_bytes(encryption, blocksize)

ECRYPT_ivsetup(iv)

ECRYPT_process_bytes(decryption, blocksize)

The parameter blocksize is adapted for each cipher. After each call of a function
the CPU cycles needed are recorded by using AVR Studio 4. This configuration is very
close to the one in the eSTREAM API. We encrypt one block of size blocksize under
the key key, the IV iv and a plaintext with solely zeros. After encryption we do a new
keysetup and decrypt the created ciphertext. If we get the (empty) plaintext, the test
succeeds.

5.3.2 Assembly language configuration

The common configuration in Assembly language looks like this:

call PREINIT

call INIT

call KEYSETUP

call IVSETUP

call ENCRYPT

call END
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In the PREINIT phase we initialize the stack pointer and define the start address of
the SRAM. After that, in the INIT phase we write the key, IV and plaintext in the flash
memory. Key setup, IV setup and encryption are the same as in the C configuration.
Because a microcontroller is a finite state machine (FSM), the algorithm ends in an
endless loop, jumping all the time to the marker END.



6 Results in C

6.1 Objectives

The final objective of this master thesis is the efficient implementation of stream ciphers
on embedded 8-bit AVR microcontrollers. The first obvious step is logically to determine
whether or not it is even possible to get the ciphers running on a device of the ATmega
family. This chapter describes our approach to create an executable version of the
focused ciphers in C language.

6.2 Implementation

In this section we describe the configuration/structure of the focused ciphers. We will
not describe the assembling of the cipher -avr.c file unless significant changes are made.
When that is the case, the information can be found in the following sections.

6.2.1 AES

Our version of the AES is the byte oriented AES implementation developed by Brian
Gladman, complemented by the ability to perform an encryption in CBC mode. Oth-
erwise the IV has been unused. Outside this small change, the rest of the cipher is
untouched. For information referring to CBC modus please see Chapter 2.1.1. In CBC
modus, before encryption is done, the plaintext is XORed with the IV, respectively the
last encrypted ciphertext block.

void xor16 (u8 value1 [ ] , u8 value2 [ ] , u8 o f f s e t 1 , u8 o f f s e t 2 ) {
2 for (u8 j =0; j <16; j++) {

value1 [ o f f s e t 1 + j ] ^= value2 [ o f f s e t 2 + j ] ;
4 }

}

We do this by using a small function called xor16() which takes 4 parameters as input:
an 8-bit array with the name value1, a second 8-bit array with the name value2 and
two 8-bit values called offset1 and offset2. The function builds the XOR conjunction of
value1 (beginning at offset1 ) and value2 (beginning at offset2 ) for the next 16 bytes.
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The speed measurement is done by a very simple main function which does the en-
cryption of one plaintext block and afterwards a decryption of the encrypted block in
CBC modus.
u8 input [ 1 6 ] = {16∗0};

2 u8 output [ 1 6 ] = {16∗0};
u8 key [ 1 6 ] = {16∗0};

4 u8 i v [ 1 6 ] = {16∗0};
u8 o_key [ 1 6 ] = {16∗0};

6 u8 key s i z e = 128 ;

8 int main (void ) {
aes_context ctx ;

10 aes_set_key ( key , keys i ze , &ctx ) ; // key setup
xor16 ( input , iv , 0 , 0 ) ; // IV setup

12 aes_encrypt ( input , output , &ctx ) ; // encrypt ion
xor16 ( output , iv , 0 , 0 ) ; // IV setup

14 aes_decrypt ( output , input , &ctx ) ; // decrypt ion
return 0 ;

16 }

If more than 1 block should be encrypted, the main function must be slightly modified:
int main (void ) {

2 aes_context ctx ;
u32 count_blocks = 24 ;

4 for (u8 i =0; i<count_blocks ; i++) {
i f ( i==0) xor16 ( input , iv , 0 , 0 ) ;

6 else xor16 ( input , output , ( i ∗16) , ( ( i −1) ∗ 16) ) ;
aes_set_key ( key , keys i ze , &ctx ) ;

8 aes_encrypt ( input + ( i ∗16) , output + ( i ∗16) , &ctx ) ;
}

10 return 0 ;
}

6.2.2 Dragon

Dragon can be made executable on an ATmega device with a modicum of effort. One
merely has to make some small changes like adapting the used variables to the standard
integer variables used by the microprocessor, and storing big static data arrays in the
flash memory. This can easily be done by adding the following three lines at the top of
the C file:
#define u8 uint8_t

2 #define u16 uint16_t
#define u32 uint32_t

All ciphers already use the identifiers u8, u16, and u32 but they are defined to be
platform-dependent in the file ‘ecrypt-config.h’. We do not include this file and add the
three lines above instead. So the cipher variables can stay untouched and work well for
us anyway.

As mentioned above, the S-boxes called sbox1 and sbox2 must be written to the flash
memory to save space in the SRAM. Corresponding to Chapter 5.1 this is accomplished
by the following two small lines:
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stat ic const u32 sbox1 [ 2 5 6 ] PROGMEM = { . . . } ;
2 stat ic const u32 sbox2 [ 2 5 6 ] PROGMEM = { . . . } ;

The loading of the values stored by this method works as specified in Chapter 5.1.

Now we have to create a small main function processing only a minimal encryption,
followed by a decryption of the encrypted ciphertext. This minimal main function and
the necessary variable declarations and initializations to run Dragon are listed below:

u8 input [ 1 2 8 ] = {128∗0};
2 u8 output [ 1 2 8 ] = {128∗0};

u8 keystream [ 1 2 8 ] = {128∗0};
4 u8 key [ 1 6 ] = { 0x00 , 0x11 , 0x22 , 0x33 , 0x44 , 0x55 , 0x66 , 0x77 , 0x88 , 0x99 , 0xAA,

0xBB, 0xCC, 0xDD, 0xEE, 0xFF } ;
u8 i v [ 1 6 ] = { 0x00 , 0x11 , 0x22 , 0x33 , 0x44 , 0x55 , 0x66 , 0x77 , 0x88 , 0x99 , 0xAA,

0xBB, 0xCC, 0xDD, 0xEE, 0xFF } ;
6 u32 key s i z e = 128 ;

u32 i v s i z e = 128 ;
8

int main (void ) {
10 ECRYPT_ctx ctx ;

ECRYPT_keysetup(&ctx , key , keys i ze , i v s i z e ) ; // key setup
12 ECRYPT_ivsetup(&ctx , i v ) ; // IV setup

ECRYPT_process_bytes(0 ,& ctx , input , output , 128 ) ; // encrypt ion
14 ECRYPT_ivsetup(&ctx , i v ) ; // IV setup

ECRYPT_process_bytes(1 ,& ctx , output , input , 128 ) ; // decrypt ion
16 return 0 ;

}

NOTE: We discovered some problems while trying to compile the optimized reference
code. The resulting keystream begins with ‘7D7256A3....’ using ‘0x000011...667777’ as
key vector instead of ‘99B3AA14...’. We compared the baseline reference code with the
optimized reference code and found out a difference in the use of the endianess macros.
In dragon-ref.c only ‘..._BIG()’ macros are used. In dragon-opt.c only ‘..._LITTLE()’
macros are used instead. Hence we replaced the appropriate appearances of the ‘..._LIT-
TLE()’ macros with the ‘..._BIG()’ macros. Afterwards we got the correct keystream
but in wrong endianess as outcome (‘14AAB3992FD03BB6...’). We solved this problem
by modifying the following lines in the KEYSTREAM_RND and the PROCESS_RND
macros (in dragon-opt.c):

In KEYSTREAM_RND replace

∗( out++) = a ^ ( f + c ) ; \
2 ∗( out++) = e ^ (d + a ) ;

with

∗( out++) = U32TO32_BIG( a ^ ( f + c ) ) ; \
2 ∗( out++) = U32TO32_BIG( e ^ (d + a ) ) ;

and in PROCESS_RND

∗( out++) = ∗( in++) ^ a ^ ( f + c ) ; \
2 ∗( out++) = ∗( in++) ^ e ^ (d + a ) ;

with
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∗( out++) = U32TO32_BIG(∗( in++) ^ a ^ ( f + c ) ) ; \
2 ∗( out++) = U32TO32_BIG(∗( in++) ^ e ^ (d + a ) ) ;

After the modification of the code in the above described way the optimized reference
code produces the correct keystream.

6.2.3 HC-128

For the correct execution of HC-128 on the ATmega128l only 2 small changes must be
made. As mentioned in the Dragon section the standard integer types must be adapted
to the microprocessor. The second change is the main function shown below:

u8 input [ 6 4 ] = {64∗0};
2 u8 output [ 6 4 ] = {64∗0};

u8 keystream [ 6 4 ] = {64∗0};
4 u8 key [ 1 6 ] = {16∗0};

u8 i v [ 1 6 ] = {16∗0};
6 u32 key s i z e = 128 ;

u32 i v s i z e = 128 ;
8

int main (void ) {
10 ECRYPT_ctx ctx ;

ECRYPT_keysetup(&ctx , key , keys i ze , i v s i z e ) ; // key setup
12 ECRYPT_ivsetup(&ctx , i v ) ; // IV setup

ECRYPT_process_bytes (0 , &ctx , input , output , 64) ; // encrypt ion
14 ECRYPT_ivsetup(&ctx , i v ) ; // IV setup

ECRYPT_process_bytes (1 , &ctx , output , input , 64) ; // decrypt ion
16 return 0 ;

}

HC-128 possesses no S-boxes or other big static arrays. Therefore there is no need to
include the file pgmspace.h.

6.2.4 LEX

In contrast to HC-128, LEX makes extensive use of static arrays. Hence we have to in-
clude the pgmspace.h to store the five 32-bit arrays with 256 entries to the flash memory.
To accomplish that, the following lines are necessary:

#include <avr/pgmspace . h>
2 . . .

stat ic const u32 Te0 [ 2 5 6 ] PROGMEM = { . . . } ;
4 stat ic const u32 Te1 [ 2 5 6 ] PROGMEM = { . . . } ;

stat ic const u32 Te2 [ 2 5 6 ] PROGMEM = { . . . } ;
6 stat ic const u32 Te3 [ 2 5 6 ] PROGMEM = { . . . } ;

stat ic const u32 Te4 [ 2 5 6 ] PROGMEM = { . . . } ;

Of course, the standard integer types must be adapted to the microprocessor and
finally there is a main function that encrypts and decrypts one 40 bit block:
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u8 input [ 4 0 ] = {40∗0};
2 u8 output [ 4 0 ] = {40∗0};

u8 keystream [ 4 0 ] = {40∗0};
4 u8 key [ 1 6 ] = {16∗0};

u8 i v [ 1 6 ] = {16∗0};
6 u32 key s i z e = 16 ;

u32 i v s i z e = 16 ;
8

int main (void ) {
10 ECRYPT_ctx ctx ;

ECRYPT_keysetup(&ctx , key , keys i ze , i v s i z e ) ; // key setup
12 ECRYPT_ivsetup(&ctx , i v ) ; // IV setup

ECRYPT_process_bytes (0 , &ctx , input , output , 40) ; // encrypt ion
14 ECRYPT_ivsetup(&ctx , i v ) ; // IV setup

ECRYPT_process_bytes (1 , &ctx , output , input , 40) ; // decrypt ion
16 return 0 ;

}

6.2.5 Salsa20

As with all the other ciphers, the integer types used in Salsa20 must be adapted to
the microprocessor. We implemented two versions of Salsa20. One direct conversion of
the original C code and one using improved rotation functions. We explain these four
functions on the basis of the first function for left rotation by 7 bits. The standard
rotation function requires 32 shifts to rotate a 32-bit value, no matter which value n
possesses.

#define ROTATE(v , c ) (ROTL32(v , c ) )
2 #define ROTL32(v , n) (U32V( ( v ) << (n) ) | ( ( v ) >> (32 − (n) ) ) )

Our improved left rotation by 7 bits is done by a rearrangement of the single bytes,
followed by a right rotation by 1 bit. Let the single bytes of a 32-bit value be denoted
as A, B, C and D, where A is the most significant byte and D the least significant byte.
Then (A|B|C|D) is permutated to (B|C|D|A) and afterwards the whole 32-bit value is
right-rotated by 1 bit. In C this looks as follows:

u32 rot7 (u32 value32 ) {
2 u8 value8 [ 4 ] , tmp ;

U32TO8_LITTLE( value8 , value32 ) ;
4 tmp = value8 [ 3 ] ;

va lue8 [ 3 ] = value8 [ 2 ] ;
6 value8 [ 2 ] = value8 [ 1 ] ;

va lue8 [ 1 ] = value8 [ 0 ] ;
8 value8 [ 0 ] = tmp ;

tmp = 0x01 & value8 [ 0 ] ;
10 value32 = U8TO32_LITTLE( value8 ) ;

value32 = value32 >> 1 ;
12 i f (tmp == 0x01 ) {

value32 ^= 0x80000000 ;
14 }

return value32 ;
16 }
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The remaining three functions work in a similar way (more information on this can
be found in Chapter 7.2.4). The main function of Salsa20 is the same for both versions
and looks as follows:

u8 input [ 6 4 ] = {64∗0};
2 u8 output [ 6 4 ] = {64∗0};

u8 keystream [ 6 4 ] = {64∗0};
4 u8 key [ 1 6 ] = {16∗0};

u8 i v [ 8 ] = {8∗0};
6 u32 key s i z e = 128 ;

u32 i v s i z e = 64 ;
8

int main (void ) {
10 ECRYPT_ctx ctx ;

ECRYPT_keysetup(&ctx , key , keys i ze , i v s i z e ) ; // key setup
12 ECRYPT_ivsetup(&ctx , i v ) ; // IV setup

ECRYPT_encrypt_bytes(&ctx , input , output , 64) ; // encrypt ion
14 ECRYPT_ivsetup(&ctx , i v ) ; // IV setup

ECRYPT_decrypt_bytes(&ctx , output , input , 64) ; // decrypt ion
16 return 0 ;

}

6.2.6 Sosemanuk

Sosemanuk uses two 32-bit arrays with 256 elements. These two tables are stored to the
flash memory by the following commands:

stat ic u32 mul_a [ ] PROGMEM = { . . . } ;
2 stat ic u32 mul_ia [ ] PROGMEM = { . . . } ;

The main function of Sosemanuk looks like this:

u8 input [ 8 0 ] = {80∗0};
2 u8 output [ 8 0 ] = {80∗0};

u8 key [ ] = {0x00 , 0x11 , 0x22 , 0x33 , 0x44 , 0x55 , 0x66 , 0x77 , 0x88 , 0x99 , 0xAA, 0
xBB, 0xCC, 0xDD, 0xEE, 0xFF} ;

4 u8 i v [ ] = {0x88 , 0x99 , 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF , 0x00 , 0x11 , 0x22 , 0
x33 , 0x44 , 0x55 , 0x66 , 0x77 } ;

6 int main (void )
{

8 ECRYPT_ctx ctx ;
ECRYPT_init ( ) ;

10 ECRYPT_keysetup(&ctx , key , ( s izeof key ) ∗8 , ( s izeof i v ) ∗8) ; // key setup
ECRYPT_ivsetup(&ctx , i v ) ; // IV setup

12 ECRYPT_process_bytes (0 , &ctx , input , output , 80) ; // encrypt ion
ECRYPT_ivsetup(&ctx , i v ) ; // IV setup

14 ECRYPT_process_bytes (1 , &ctx , output , input , 80) ; // decrypt ion
return 0 ;

16 }
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6.3 Results

This section provides the results for efficiency of the implementations in C language.

6.3.1 Memory Usage

A microcontroller is restricted by the the size of available flash memory and SRAM.
Flash memory is used to store static information like program code or huge look-up
tables. The (usually) even smaller SRAM is used for dynamic access during program
execution. The memory requirements of each cipher’s implementation determine the
smallest possible AVR device.

Table 6.1 shows the memory allocation in flash memory. More specifically, Table 6.1
provides (i) the size of the flash memory which is used to store the program code,
(ii) the required size of flash memory for the storage of static arrays, like S-boxes for
instance, (iii) the total size of program code and static arrays, and (iv) the associated
AVR device, i.e. the smallest device on which the implementation of the cipher can be
executed without errors.

Table 6.1: Memory allocation in flash memory of C implementations

Cipher Program Code Static Arrays Memory (Total) Device
[byte] [byte] [byte] [percentage]

AES 4616 2048 6664 40,67% ATmega16
Dragon 55386 2048 57434 43,82% ATmega128
HC-128 23100 0 23100 17,62% ATmega1281
LEX 16278 5120 21398 65,30% ATmega32
Salsa20 4478 0 4478 54,66% ATmega8
Salsa20 V2 3842 0 3842 46,90% ATmega8
Sosemanuk (M) 42656 2048 44704 68,21% ATmega64
Sosemanuk (F) 22600 2048 24648 75,22% ATmega32

In terms of flash memory consumption, the less memory is needed the better. A
good indicator is the corresponding device on which the cipher is executable. As we see
in Table 6.1, all devices of the ATmega family are represented. In nearly all cases the
consumption of flash memory determines the associated device. Here, the only exception
is HC-128. HC-128 can only be executed on an ATmega1281 device because of its huge
usage of SRAM as we see in Table 6.2. We can observe that Salsa20 and AES take
the lead in this area, followed by LEX and Sosemanuk. Dragon and HC-128 are only
executable on the two biggest devices of the ATmega family.

Table 6.2 has nearly the same structure as Table 6.1, but focuses on the amount of
SRAM needed by the ciphers. Column 2 shows the requirement of the cipher specific
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structure ECRYPT_ctx in bytes, which represents the internal state of the cipher. This
value is important because WinAVR disregards dynamic variables in the value given in
Column 3 as discussed in Chapter 5.2. Column 4 provides the total size of used SRAM
(based on the sum of columns 2 and 3) and the following Column 5 displays this value
in percentage in relation to the associated AVR device (Column 6).

Table 6.2: Memory allocation in SRAM of C implementations

Cipher ECRYPT_ctx Static Variables Total SRAM Device
[byte] [byte] [byte] [percentage]

AES 241 88 329 32,13% ATmega16
Dragon 405 424 829 20,24% ATmega128
HC-128 4324 232 4556 55,62% ATmega1281
LEX 232 200 432 21,09% ATmega32
Salsa20 64 258 322 31,45% ATmega8
Salsa20 V2 64 258 322 31,45% ATmega8
Sosemanuk (M) 448 192 640 15,63% ATmega64
Sosemanuk (F) 448 192 640 31,25% ATmega32

While all ciphers possess moderate values in the total SRAM usage, HC-128 sticks
out from the others with a consumption of 4556 bytes. The ranking in this area is the
same as in the area before.

NOTE: In the tables there exists a cipher named ‘Salsa20 V2’. This is our second
Salsa20 implementation using the improved rotation functions.

As shown in Table 6.3 with our improved version of Salsa20, we can significantly save
cycles when we replace the rotation macro by a rotation function that uses permutation
of bytes prior to rotations and additionally adapts better to an 8-bit microcontroller.
The original macro does 32 shifts, no matter how many bits should be rotated. Our
improvement saves nearly 75% of cycles needed by the original macro.

AES, Dragon, LEX, Salsa20, Salsa20 V2, Sosemanuk (M) and Sosemanuk (F)1 cannot
be reduced to smaller AVR devices because of their consumption of flash memory2. HC-
128 instead has to use the ATmega1281 device because of its immense usage of SRAM
shown in Table 6.2.

1If it is necessary to get the Sosemanuk cipher running on a smaller device than an ATmega64, this
goal can be achieved by replacing all macros with functions. In this case the needed size of flash
memory shrinks to 24,648 bytes. The big drawback of this modification is the reduced encryption
speed as visible in the Tables 6.3 and 6.4.

2Though the flash size entries of Table 6.1 seem to indicate that AES, Dragon and Salsa20 V2 can be
implemented on a smaller AVR device, actually this is not possible.
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6.3.2 Performance

In the following performance benchmarks we use a key and IV size of 128 bit. Input and
output arrays are equal to the block size of each cipher. This means that we encrypt
one block with each cipher.

Table 6.3 shows the number of cycles for the initialization, key setup, IV setup and
encryption for each cipher. As seen in Table 6.3, HC-128 consumes very much cycles
in the iv_setup() function. However, HC-128 achieves the lowest number of cycles for
encryption of one block of data.

Table 6.3: Performance of initialization, key setup, IV setup, and encryption of C im-
plementations (all numbers given are measured CPU cycles)

Cipher Initialization Key Setup IV Setup Encryption
AES 586 6953 196 12574
Dragon 2700 2136 24052 24227
HC-128 1452 460 2082876 10804
LEX 1426 2619 7367 8061
Salsa20 1700 249 71 90802
Salsa20 V2 1700 248 70 48942
Sosemanuk (M) 1282 32851 33972 14134
Sosemanuk (F) 1282 56327 61149 19938

Remarkably in Table 6.3 is the amount of required cycles for the IV setup of HC-128
in contrast to Salsa20, which requires nearly no cycles for this function. The cycle count
for encryption in Column 5 lacks significance because the blocksize is not included. This
circumstance has been kept in mind while creating Table 6.4. Note that the amount of
cycles needed for initialization (given in Column 2) is composed of the required activities
to initialize the microprocessor and the ECRYPT_ctx struct.

Table 6.4 focuses on the throughput of the encryption function for each cipher while
Table 6.3 gives the number of cycles for one block size. More specifically, Table 6.4
provides (i) the corresponding block size, (ii) the count of cycles from Table 6.3, (iii) the
quotient of the count of cycles and block size, and (iv) the throughput of the encryption
function. The throughput is computed by dividing the CPU clock (assuming 8 MHz)
by the quotient of the count of cycles and the block size.

As shown in Table 6.4, the ciphers can be classified into two groups regarding through-
put. HC-128, Sosemanuk (M), Dragon, LEX and Sosemanuk (F) belong to the fast
group. Salsa20 V2, AES and Salsa20 reside in the slow group. Important is the fact
that the improved Salsa20 implementation produces nearly twice the output of the origi-
nal Salsa20 implementation. Note further that for long keystreams the encryption is the
dominant factor (but remember the huge time for IV setup of HC-128). When only a
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Table 6.4: Throughput of encryption of C implementations

Cipher Block Size Encryption Ratio Throughput
[byte] [cycles] [cycles/byte] [bytes/sec]

@8MHz
AES 16 12574 785,88 10180
Dragon 128 24227 189,27 42267
HC-128 64 10804 168,81 47390
LEX 40 8061 201,53 39697
Salsa20 64 90802 1418,78 5639
Salsa20 V2 64 48942 764,72 10461
Sosemanuk (M) 80 14134 176,68 45281
Sosemanuk (F) 80 19938 249,23 32100

small amount of keystream has to be generated, it can be seen from Table 6.4 that LEX
is the most efficient cipher. Up to an output of approximately 48 bytes of keystream,
AES is the second most efficient that is then surpassed by Dragon.
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7.1 Goals and Objectives

This chapter provides the results on efficiency of our implementations in Assembly.
Details on the framework used are provided in Chapter 5.3. We used an Assembly
implementation of the AES cipher [18] to be able to adequately compare our Assem-
bly implementations of Dragon, LEX, Salsa20 and Sosemanuk. We did not implement
HC-128 in Assembly because its huge consumption of SRAM memory prohibits the im-
plementation on any small AVR device. For each cipher, two different implementations
have been created. Dragon, Salsa20 and Sosemanuk are implemented in a function-based
version and a macro-based version, respectively. The function-based versions are real-
ized with the goal of minimizing the use of flash memory. In contrast, the macro-based
versions are optimized to reach high throughput rates. LEX is treated as a special case.
The version called ‘LEX’ is the transformation of the C version of LEX in Assembly
language using five big static arrays. By contrast, the version named ‘LEX V2’ is an As-
sembly language implementation derived from our Assembly language implementation
of the AES.

NOTE: It is important to mention that the savings in cycles mentioned below are only
possible if the C code is translated into Assembly language in a native and unoptimized
way. However, the C compiler partly optimizes the code during translation. Because of
this we can not save as much cycles as the numbers below may indicate in practice.
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7.2 Implementation

This section contains implementation details of AES, Dragon, LEX, Salsa 20 and Sose-
manuk (alphabetically ordered).

7.2.1 AES

The AES cipher is implemented in Assembly language for comparison reasons. As a
matter of fairness we did not want to compare the C language version of AES with
the adjusted Assembly versions of the other ciphers. So we decided to use the AES
implementation of Christian Roepke [18], which adapts well to an 8-bit microcontroller.
This implementation makes use of on-the-fly subkey computation, whereby the com-
putation of the subkeys is included in the encryption function. We modified the given
implementation in such a way, that the generation of the subkeys is entirely done before
encryption. The IV setup is a simple XOR of the 16 plaintext bytes and the 16 IV bytes.
Figure 7.1 shows the memory allocation of AES in SRAM.

key

IV

plaintext

subkeys

0x0060

0x0070

0x0080

0x0090

16 bytes

16 bytes

16 bytes

176 bytes

8 bytes

0x0140

Figure 7.1: AES: Memory allocation in SRAM
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Key Setup

The key setup computes the subkeys by the application of the minimal S-box with 28

elements, the rcon table and the RotWord() function as given in the specification of the
AES [8].

IV Setup

As already noted, the IV setup consists of a simple XOR of the 16 plaintext bytes and
the 16 IV bytes to transform the AES from ECB to CBC mode.

Encryption

As given in the specification of AES, the encryption consists of 10 rounds. Preceding
to the first round, the first subkey is added to the plaintext. Subsequently 9 full rounds
are applied. This means that the following 4 functions are called in this order:

• S_BOX()

• SHIFT_ROWS()

• MIX_COLUMNS()

• SKEYADD()

The last round is a full round without the application of the MIX_COLUMNS()
function. The SHIFT_ROWS() function rotates values by 1, 2 and 3 bytes. We make no
use of the rotation functions but move the bytes directly to the destination register. This
makes it possible to save a lot of cycles in contrast to the C language implementation.
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7.2.2 Dragon

The C source code of Dragon offers a lot of possibilities to enhance the speed of the cipher
and to minimize the code size. The speed of the C version is good, but an ATmega128
as running device is not the first choice when a stream cipher should be implemented
on a 8-bit microcontroller. The S-boxes G and H are frequently used in the Dragon
cipher, during IV setup, as well as during the encryption and the decryption functions.
So the focus lies on the fast implementation of these virtual 32 × 32 S-boxes. Further
improvements can be made through intelligent register and SRAM handling, so that
values which are changed frequently are held in the registers instead of being written
back into SRAM. Figure 7.2 shows the memory allocation of Dragon in SRAM.

key
IV

0x0100
0x0110
0x0120

16 bytes
16 bytes

16 bytes

plain / in

nlfsr_word

init state

128 bytes

128 bytes

8+4+1 bytes

128 bytes

0x01A0

0x0220

0x02A0
state_counter nlfsr_offset full_rekeying

init state

0x02B0

para 0 - 70x0330 8 bytes

128 bytes

Figure 7.2: Dragon: Memory allocation in SRAM
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Key Setup

During key and IV setup the LFSR is primarily initialized using the key and the IV in
the following manner: (k|(k’ ˆ iv’)|iv|(k ˆ iv’)|k’|(k ˆ iv)|iv’|(k’ ˆ iv)), where | denotes a
concatenation. If the 128 bit key is divided into 4 parts, the key can be formalized as
k = (k0|k1|k2|k3) and k’ = (k2|k3|k0|k1). The identifiers k’ and iv’ denote the key and
the IV, whereby the first and the last half of the key, respectively the IV, are swapped.
In the key setup only k and k’ are stored to the relevant positions (for further details
see Figure 7.3 and Figure 7.4). In the Assembly language version of the key setup
the U8TO32_BIG() macro is not needed, because the separate bytes can be addressed
directly. This saves a lot of cycles. The U8TO32_BIG() macro looks like this:

#define U32TO32_BIG(v ) SWAP32(v )
2 #define SWAP32(v ) \

( (ROTL32(v , 8) & U32C(0x00FF00FF) ) | \
4 (ROTL32(v , 24) & U32C(0xFF00FF00) ) )

#define ROTL32(v , n) \
6 (U32V( ( v ) << (n) ) | ( ( v ) >> (32 − (n) ) ) )

That means that the U8TO32_BIG() macro calls the SWAP32() macro which calls
the ROTL32() macro. It does a swapping of the four bytes of a 32-bit value. On an 8-bit
microcontroller we have the ability to access the separate bytes directly and so we simply
read the bytes in reverse order. This completely avoids the use of the U8TO32_BIG()
macro which saves 276 CPU cycles ((2 · 32 · 4) cycles for shift operations, (2 · 4) + 4
cycles for binary ORs and (2 · 4) binary ANDs). The U8TO32_BIG() macro is used
eight times during the key setup and so we save a total of 2, 208 cycles.

Regardless of the explicit implementation, the key setup can be displayed as follows
(ctx→nlfsr_word[] is an 32-bit array of size 32):

k0 is written at the positions 0, 6, 12, 18, 20 and 30 of ctx→nlfsr_word[].
k1 is written at the positions 1, 7, 13, 19, 21 and 31 of ctx→nlfsr_word[].
k2 is written at the positions 2, 4, 14, 16, 22 and 28 of ctx→nlfsr_word[].
k3 is written at the positions 3, 5, 15, 17, 23 and 29 of ctx→nlfsr_word[].

Afterwards the current state of ctx→nlfsr_word[] is copied to ctx→init_state[]. The
saving of cycles arise from the unrolling of the for-loops.

NOTE: The positions 8 to 11 and 24 to 27 of the ctx→nlfsr_word[] array stay unas-
signed in the key setup. This positions will be filled in the IV setup.

IV Setup

The first part of the IV setup of Dragon is either a continuation of the key initial-
iziation, or a fresh rekeying. In the second case, first ctx→init_state[] is copied to
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Figure 7.3: Dragon: Key setup

ctx→nlfsr_word[]. The second phase of the IV setup consists of the mixing process,
where the values of the elements of the ctx→nlfsr_word[] array are randomized.

The first part of the IV setup is composed of the writing and XORing of iv and iv’.
Similar to the key setup, the IV setup can be displayed in a very easy manner. Let
us denote iv = (iv0|iv1|iv2|iv3) and iv’ = (iv2|iv3|iv0|iv1). Then the IV setup can be
illustrated as followed:

iv0 is written at the positions 8 and 26 of ctx→nlfsr_word[],
iv1 is written at the positions 9 and 27 of ctx→nlfsr_word[],
iv2 is written at the positions 10 and 24 of ctx→nlfsr_word[],
iv3 is written at the positions 11 and 25 of ctx→nlfsr_word[],

iv0 is XORed with and written at the positions 6, 14, 20 and 28 of ctx→nlfsr_word[],
iv1 is XORed with and written at the positions 7, 15, 21 and 29 of ctx→nlfsr_word[],
iv2 is XORed with and written at the positions 4, 12, 22 and 30 of ctx→nlfsr_word[],
iv3 is XORed with and written at the positions 5, 13, 23 and 31 of ctx→nlfsr_word[].

We save a lot of cycles because we are able to access the separate bytes of the 32-bit
values directly and because we do not use loops like in the C version.

At the second part of the IV setup, the elements of the array ctx→nlfsr_word[] are
scrambled to complete the initialization process. Therefore the macros with the names
DRAGON_NLFSR_WORD(), DRAGON_OFFSET() and DRAGON_UPDATE() are
used. The DRAGON_OFFSET() macro specifies and alters the current offset. This
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Figure 7.4: Dragon: First part of the IV setup

offset is added to the current element of ctx→nlfsr_word[] (given as parameter) and af-
terwards the resulting value modulo 32 is computed. The DRAGON_NLFSR_WORD()
macro changes the value of the element given in the parameter (the offset is included in
this computation). The DRAGON_UPDATE() macro uses XORs, additions modular
232 and the virtual S-boxes G1 to G3 and H1 to H3. The S-box G1 is defined as follows
(in C notation):

#define G1(x ) \
2 RFF( sbox2 [ x & 0xFF ] ) ^ \

RFF( sbox1 [ ( x >> 8) & 0xFF ] ) ^ \
4 RFF( sbox1 [ ( x >> 16) & 0xFF ] ) ^ \

RFF( sbox1 [ ( x >> 24) & 0xFF ] )

NOTE: The RFF() macro is explained in Chapter 5.1.

To access the separate bytes of the 32-bit value x, 48 right-shifts, 4 ANDs and 3
XORs are needed, which leads to a total saving of (8 · 4) + (16 · 4) + (24 · 4) + (4 ·
4) + (3 · 4) = 220 cycles in Assembly language. This corresponds to 1, 320 cycles at
each call of the DRAGON_UPDATE() macro (6 S-box calls are used in the macro)
and altogether 21, 120 cycles within the 16 rounds during the IV setup. As in the key
setup the U8TO32_BIG() macro is used 8 times, so we save another 2, 208 cycles. The
remaining instructions do not offer great opportunities for enhancing the speed or scaling
down the code size.
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Encryption

The encryption function is an iterated call of the KEYSTREAM_ROUND() macro
which includes the BASIC_ROUND() macro. This call of the KEYSTREAM_ROUND()
macro is done 16 times.

#define BASIC_RND( ctx , a , loc_a , b , loc_b , c , loc_c , \
2 d , loc_d , e , loc_e , f , loc_fb1 , c1 , c2 ) \

a = ctx−>nlfsr_word [ loc_a ] ; \
4 c = ctx−>nlfsr_word [ loc_c ] ; \

e = ctx−>nlfsr_word [ loc_e ] ^ c1 ; \
6 b = ctx−>nlfsr_word [ loc_b ] ^ a ; \

d = ctx−>nlfsr_word [ loc_d ] ^ c ; \
8 f = ( ctx−>nlfsr_word [ loc_e+1] ^ e ) ^ ( c2++) ; \

c += b ; \
10 e += d ; \

a += f ; \
12 f ^= G2( c ) ; b ^= G3( e ) ; d ^= G1( a ) ; \

e ^= H3( f ) ; a ^= H1(b) ; c ^= H2(d) ; \
14 ctx−>nlfsr_word [ loc_fb1 ] = b + e ; \

ctx−>nlfsr_word [ loc_fb1+1] = c ^ (b + e ) ;

The essential part of this macro is the application of the S-boxes. These are used in
exactly the same manner as in the DRAGON_UPDATE() macro. Hence, we can save
the same amount of cycles here. We save 220 cycles with every call of a G or H function.
These functions are called 6 times in each round and the encryption function runs over
16 rounds. So we save (220 · 6 · 16) = 21, 120 cycles through this. Furthermore, the
BASIC_ROUND() macro is programmed in such way that all data can be held in the
registers. There is no need for outsourcing data into the SRAM if it is not specified by
the algorithm.

#define KEYSTREAM_RND( ctx , a , loc_a , b , loc_b , c , loc_c , \
2 d , loc_d , e , loc_e , f , loc_fb1 , c1 , c2 , in , out ) \

BASIC_RND( ctx , a , loc_a , b , loc_b , c , loc_c , \
4 d , loc_d , e , loc_e , f , loc_fb1 , c1 , c2 ) \

tmp = a ^ ( f + c ) ; \
6 ∗( out++) = U32TO32_BIG(tmp) ; \

tmp = e ^ (d + a ) ; \
8 ∗( out++) = U32TO32_BIG(tmp) ;

In the rest of the KEYSTREAM_ROUND() macro we are able to save another (276 ·
2) = 552 cycles per round (because of the U32TO32_BIG() macro), which accumulates
to 8, 832 saved cycles.
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7.2.3 LEX

As we already mentioned in the introduction of this chapter we implemented two versions
of LEX in Assembly language. In this section we describe the implementation of the
‘LEX’ version. As the version ‘LEX V2’ is in principle an improved and slightly modified
AES, we do not take a closer look at this version. Figure 7.5 shows the memory allocation
of LEX in SRAM.

key

IV

plaintext

subkeys

0x0060

0x0070

0x0080

0x00A8

16 bytes

16 bytes

40 bytes

176 bytes

8 bytes

ks

blockstate

40 bytes

16 bytes

0x0158

0x0180

0x0190

Figure 7.5: LEX: Memory allocation in SRAM

Key Setup

LEX makes extensive use of 5 static arrays with 256 4-byte values. The fourth of these
5 tables, named Te4[], is used for the key setup. So the key setup only consists of load
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operations from this array, the rcon table lookups and some XOR operations. These
operations do not offer great possibilities for improvements or reduction of code size.

NOTE: The Te4[] array is solely a extended version of the original S-Box with 28

elements of the AES. All 4 bytes of one element of this array have the same value. This
simplifies the handling with the values of the S-box on a computer with 4-byte word size,
but is not necessary on an 8-bit microcontroller. To save flash memory and to enhance
the speed of the key setup of LEX this array can be reduced to 256 entries of 8-bit size.
A similar reduction is possible for the rcon table.

IV Setup

The IV setup of LEX consists of the encryption of the IV under the secret key k. There-
fore the IV serves as input/plaintext for the encryption function, which is also used
for the normal encryption. The implementation of the encryption function of LEX is
explained in the next section.

Encryption

The encryption function uses the 4 precomputed arrays Te0[] to Te3[] to make table
lookups instead of using the functions S_BOX(), SHIFT_ROWS(), MIX_COLUMNS()
and SKEYADD(). First, the plaintext is XORed with the first subkey and afterwards
the lookup tables are used. This looks like this:

/∗ round 1 : ∗/
2 t0 = RFF(Te0 [ s0 >> 24 ] ) ^ RFF(Te1 [ ( s1 >> 16) & 0 x f f ] ) ^ RFF(Te2 [ ( s2 >> 8) & 0 x f f ] ) ^

RFF(Te3 [ s3 & 0 x f f ] ) ^ rk [ 4 ] ;
t1 = RFF(Te0 [ s1 >> 24 ] ) ^ RFF(Te1 [ ( s2 >> 16) & 0 x f f ] ) ^ RFF(Te2 [ ( s3 >> 8) & 0 x f f ] ) ^

RFF(Te3 [ s0 & 0 x f f ] ) ^ rk [ 5 ] ;
4 t2 = RFF(Te0 [ s2 >> 24 ] ) ^ RFF(Te1 [ ( s3 >> 16) & 0 x f f ] ) ^ RFF(Te2 [ ( s0 >> 8) & 0 x f f ] ) ^

RFF(Te3 [ s1 & 0 x f f ] ) ^ rk [ 6 ] ;
t3 = RFF(Te0 [ s3 >> 24 ] ) ^ RFF(Te1 [ ( s0 >> 16) & 0 x f f ] ) ^ RFF(Te2 [ ( s1 >> 8) & 0 x f f ] ) ^

RFF(Te3 [ s2 & 0 x f f ] ) ^ rk [ 7 ] ;
6 ctx−>ks [ 0 ] = ( t0 & 0xFF00FF00) ^ ( ( t2 & 0xFF00FF00)>>8) ; /∗ Leak f o r odd rounds ∗/

/∗ round 2 : ∗/
8 s0 = RFF(Te0 [ t0 >> 24 ] ) ^ RFF(Te1 [ ( t1 >> 16) & 0 x f f ] ) ^ RFF(Te2 [ ( t2 >> 8) & 0 x f f ] ) ^

RFF(Te3 [ t3 & 0 x f f ] ) ^ rk [ 8 ] ;
s1 = RFF(Te0 [ t1 >> 24 ] ) ^ RFF(Te1 [ ( t2 >> 16) & 0 x f f ] ) ^ RFF(Te2 [ ( t3 >> 8) & 0 x f f ] ) ^

RFF(Te3 [ t0 & 0 x f f ] ) ^ rk [ 9 ] ;
10 s2 = RFF(Te0 [ t2 >> 24 ] ) ^ RFF(Te1 [ ( t3 >> 16) & 0 x f f ] ) ^ RFF(Te2 [ ( t0 >> 8) & 0 x f f ] ) ^

RFF(Te3 [ t1 & 0 x f f ] ) ^ rk [ 1 0 ] ;
s3 = RFF(Te0 [ t3 >> 24 ] ) ^ RFF(Te1 [ ( t0 >> 16) & 0 x f f ] ) ^ RFF(Te2 [ ( t1 >> 8) & 0 x f f ] ) ^

RFF(Te3 [ t2 & 0 x f f ] ) ^ rk [ 1 1 ] ;
12 ctx−>ks [ 1 ] = ( ( s1 & 0xFF00FF)<<8) ^ ( s3 & 0xFF00FF) ; /∗ Leak f o r even rounds ∗/

Obviously the C implementation uses eight 32-bit values. These values are called s0 to
s3 (group s), respectively t0 to t3 (group t) and one of the groups is alternately used as a
storage for the values of the previous or the current round. This means that four 32-bit
values must be saved in order to compute the values of the present round. These are 16
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bytes of the last round and 16 bytes of the current round. As the ATmega8 possesses
only 32 registers, whereby we need some of them for pointer handling and temporary
values, we can not hold all these 32 bytes in the registers at the same time. The C
version swaps out the values of the last round to the SRAM, but we were able to devise
a more efficient solution. We analyzed the algorithm and found out that if we want to
store the values of the s and the t group in the same registers, then it is only necessary
to swap out six 8-bit values. If we divide a 32-bit value X to single bytes and we use
the notation X = (A|B|C|D) then the 6 bytes to store can be denoted as: S0(B), S0(C),
S0(D), S1(C), S1(D) and S2(D). The same applies to the values of the t group. The
remaining necessary bytes are still accessible in the registers. This improvement saves a
lot of cycles, because we do not have to store the values to the SRAM and then reload
them later.
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7.2.4 Salsa20

The most important part of Salsa20 is the quarterround function. At this point, chances
are good to save CPU cycles. The rest of the cipher can partly be optimized but these
changes do not affect the cycle count as much as the optimization of the quarterround
function. To alleviate the understanding of the setup of the cipher and the memory
allocation in SRAM, take a look at Figure 7.6.

key

IV

plaintext

ctx -> input

x

output

0x0060

0x0070
0x0078

0x00B8

0x00F8

0x0138

0x0178

16 bytes

8 bytes

64 bytes

64 bytes

64 bytes

64 bytes

8 bytes

Figure 7.6: Salsa20: Memory allocation in SRAM

Initialization

During the initialization phase, the key, the IV, and the plaintext are stored into the
SRAM. This part is not included in the cycle count calculation of the key setup. The 16
bytes of the key are stored to the start address of the SRAM at position 0x0060, followed
by the 8 bytes of the initialization vector starting from 0x0070. Another 64 bytes of the
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plaintext are written into the SRAM, beginning at start address 0x0078. Furthermore,
the stack is initialized and the Y pointer is filled with the start address of the SRAM.

Key Setup

In the key setup the 32-bit array x->input[] of size 16 is filled with certain parts of the
key k and the constant tau. In the C version the macro U8TO32_LITTLE() is used to
get the 32 bits out of an 8-bit array in little endian order. In Assembly language, there
exists the possibility to access the 4 bytes of a 32-bit value directly and therefore a few
cycles can be saved because the reordering of the bytes can be done by reading in the
values backwards. For this, the key setup in Assembly language needs fewer cycles than
the C language version. The constant τ (tau) is loaded from flash by the following code:

; bend over Z po in t e r to tau
2 ld i ZL ,LOW( tau ∗2)

ld i ZH,HIGH( tau ∗2)
4

; U8TO32_LITTLE( tau + 0)
6 lpm reg3 , Z+

lpm reg2 , Z+
8 lpm reg1 , Z+

lpm reg0 , Z+

IV Setup

In the key setup only 12 of the 16 entries of the array x->input[] are filled. The remaining
4 bytes are filled with the IV and zeros. Here the U8TO32_LITTLE() is used as well
and therefore the IV setup in Assembly language is a little bit faster than in the C
version.

Encryption

The encryption of Salsa20 is done by calling the doubleround function 10 times. This
amounts to 8 calls of the quarterround function in every of the 10 rounds. All in all,
the encryption consists of 80 calls of the quarterround function. So the main focus of
speeding up the entire encryption lies in optimizing the quarterround function.

The quarterround function

As shown in Chapter 3.6.1, the quarterround function makes extensive use of left rota-
tions, more precisely, left rotation by 7, 9, 13 and 18 bits.

#define ROTATE(v , c ) (ROTL32(v , c ) )
2 #define ROTL32(v , n) (U32V( ( v ) << (n) ) | ( ( v ) >> (32 − (n) ) ) )
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The ROTATE() macro does 32 shifts and an OR operation, no matter how many bits
should be rotated. There is a great saving of cycles when using permutations of bytes
in favor of rotations which is very easy to realize in Assembly language.

Here the explanation of the realizations of the fast rotations by 7, 9, 13 and 18 bits
follows. Let the single bytes of a 32-bit value be denoted as A, B, C and D, where A is
the most significant byte and D the least significant byte. The original ROTATE macro
needs 132 cycles for execution. This means that alone the rotations in the quarterround
function require 528 CPU cycles.

The left rotation by 7 bits is done by a rearrangement of the single bytes, followed
by a right rotation by 1 bit. This is shown in Figure 7.7. (A|B|C|D) is permutated to
(B|C|D|A) and afterwards the whole 32-bit value is right-rotated by 1 bit. This improved
rotation needs only 11 cycles in average, only 8% of the cycles required by the original
macro.

A DCB

B ADC

B A’DC

Figure 7.7: Salsa20: Left rotation of a 32-bit value by 7 bits

The left rotation by 9 bits is also done by a rearrangement of the single bytes, but
now followed by a left rotation by 1 bit. This is shown in Figure 7.8. (A|B|C|D) is
permutated to (B|C|D|A) and afterwards the whole 32-bit value is left-rotated by 1 bit.
This improved rotation needs only 11 cycles in average. Again, this is only 8% of the
cycles required by the original macro.

A DCB

B ADC

B’ ADC

Figure 7.8: Salsa20: Left rotation of a 32-bit value by 9 bits

The left rotation by 13 bits is done by a rearrangement of the single bytes, followed
by a right rotation by 3 bits. This is shown in Figure 7.9. (A|B|C|D) is permutated
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to (C|D|A|B) and afterwards the whole 32-bit value is right-rotated by 3 bits. This
improved rotation needs only 29 cycles in average, 21% of the cycles required by the
original macro.

A DCB

C BAD

C B’AD

Figure 7.9: Salsa20: Left rotation of a 32-bit value by 13 bits

The left rotation by 18 bits is done by a rearrangement of the single bytes, followed
by a left rotation by 2 bits. This is shown in Figure 7.10. (A|B|C|D) is permutated to
(C|D|A|B) and afterwards the whole 32-bit value is left-rotated by 2 bits. This improved
rotation needs only 22 cycles in average 16% of the cycles required by the original macro.

A DCB

C BAD

C’ BAD

Figure 7.10: Salsa20: Left rotation of a 32-bit value by 18 bits

The application of these 4 improved rotation versions for rotations by 7, 9, 13 and 18
bits consumes only 73 cycles instead of 528 of the original rotation version. This saves
36, 400 cycles in the 80 calls of the quarterround function. The rest of the quarterround
function provides no significant optimization potential. The first 16 registers are filled
by values taken from the SRAM. The registers 16 to 19 are used as temporary memory.
Therefore there is just a little overhead, which does not exist in the C version. After the
call of the quarterround function, the values are stored back to the SRAM.
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7.2.5 Sosemanuk

The Sosemanuk cipher uses a reduced version of the Serpent cipher for IV initialization
and the Snow 2.0 LFSR with a reduced internal state. Consequently, this increases
the size of the code. The Sosemanuk implementation features 2 inline functions and 20
macros to realize a successful encryption. Four of these 20 macros use the ROTL() macro
of which we know that we can save cycles by using improved rotation functions. Another
possibility to save cycles is the fast implementation of a (32 × 32)-bit multiplication,
which is used in the FSM() macro.

key
IV

0x0100
0x0110
0x0120

16 bytes
16 bytes

16 bytes

plaintext / ciphertext 80 bytes

w0 ... w7

subkeys

32 bytes

400 bytes

40 bytes

8 bytes
20 bytes

80 bytes

0x0170

0x0190

0x0320
s00 … s09

r1, r2
u

v
v

dst

16 bytes

0x0350

0x0370
0x0380

Figure 7.11: Sosemanuk: Memory allocation in SRAM
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The cycle count can also be reduced by efficient resource handing. In the Assembly
code of Sosemanuk all macros are implemented in such a way that they only need 4
additional registers for the saving of temporary values. Furthermore, if possible, back
writing of values is tried to be avoided and replaced by movement of variables.

Key Setup

During the key setup the following macros are used:

• S0() to S7(),

• SKS0() to SKS7() and

• WUP0() and WUP1().

The S-box macros S0() to S7() hold no great potential of optimization. They make
use of only very trivial operations like exclusive OR, binary inversion, binary OR, and
binary AND. These operations can be efficiently executed on a microcontroller. The
S-box take five 32-bit values as input and is implemented by using only one additional
32-bit value for storing intermediate results.

The macros SKS0() to SKS7() use the corresponding S-box macro and store four of
the five 32-bit values as sub-keys.

Rotations by 11 bit are used 4 times in the WUP0() macro, respectively in the WUP1()
macro. During the key setup the WUP0() macro is called 13 times, the WUP1() macro
is called 12 times. This is an overall sum of 100 calls of the rotation macro. Instead
of 132 cycles the improved rotation version needs only 28 cycles. This is a saving of
104 · 4 = 416 cycles per call of the macro and an overall saving of 10, 400 in the whole
key setup. The rotation by 11 bits is implemented as shown in Figure 7.12.

A DCB

B ADC

B’ ADC

Figure 7.12: Sosemanuk: Left rotation of a 32-bit value by 11 bits
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IV Setup

During IV setup the following macros are used:

• FSS(),

• KA(),

• S0 to S7 and

• SERPENT_LT().

Several macros are called by the FSS() macro, namely the KA() macro, the S0 to S7
macros and the SERPENT_LT() macro.

The KA() macro performs solely a XOR association between its 4 input values and
the subkey at the position offset.

Dependent on the input of the FSS() macro, one of the 8 S() macros is called and the
input values pass through the corresponding S-box.

Rotations and also shift operations are contained in the SERPENT_LT() macro. Here
32-bit values will be rotated by 1, 3, 5, 7, 13 and 22 bit and shifted by 3 and 7 bit. The
rotations by 1 and 3 bit are processed as usual. Rotation by 5 and 7 bits are done by
reordering of the separate bytes ((A|B|C|D) becomes (B|C|D|A)) and a subsequent right
rotation by 3 bits, respectively 1 bit. The rotation by 13 bits is already shown in Figure
7.9. The left rotation by 22 bits is a right rotation by 10 bits and so the 32 bit value is
right rotated by 2 bits after reordering from (A|B|C|D) to (D|A|B|C).

A DCB

B ADC

B A’DC

1000000

AND

B 0000000DC

Figure 7.13: Sosemanuk: Left shift of a 32-bit value by 7 bits

The shifting operation by 3 bits is done in the natural way again and the shifting
by 7 bits is shown in Figure 7.13. First the order of the separate bytes is changed
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from (A|B|C|D) to (B|C|D|A). Afterwards, the whole 32-bit value is right shifted by 1
bit and finally the least significant byte is AND-associated with the hexadecimal value
0x80. This leads to the deletion of the 7 least significant bits of the 32-bit value. This
method needs only 12 cycles in average, whereby the normal left shift requires 43 cycles.
So we can save 72% of the cycles used so far. All in all during the SERPENT_LT()
macro, simply by replacing the original rotation and shift macros/operations with the
improved versions, 700 cycles can be saved. Instead of 835 cycles our improved version
requires only 135 cycles in average. This are only 28% and because of 24 calls of the
SERPENT_LT() macro we can save up to 16, 800 CPU cycles.

Encryption

During the encryption the following important macros are used:

• MUL_A(),

• MUL_G(),

• STEP(),

• FSM(),

• LRU(),

• CC1() and

• SRD().

The three macros FSM(), LRU() and CC1() together build the STEP() macro, which
is called 20 times during the encryption process. Inside the FSM() macro, most cycles
are required by a (32 × 32)-bit multiplication modulo 232 and a left rotation by 7 bits.
As we already know, we can save 121 cycles with our improved version of the rotation
and also the multiplication can be speeded up.

Figure 7.14 shows a graphical illustration of a 32 × 32-bit multiplication modulo 232

and our approach to enhance the computation.

#define ONE32 ( (u32) 0xFFFFFFFF)
2 #define T32(x ) ( ( x ) & ONE32)

// some l i n e s . . .
4 t t = T32( or1 ∗ 0x54655307 ) ; \

The listing above shows that the the value or1 and the static value 0x54655307 are
multiplied within the T32() macro. This macro cuts all digits beyond the limit of
the length of 32 bits. Let us denote the first 32-bit factor for the multiplication as X
and the second factor as Y. Obviously the C version of the multiplication computes
the product of every byte of X multiplied with every byte of Y. Afterwards the T32()
macro cuts the dispensable parts of the product. But there is a more efficient way to
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A B C D * E F G H

D*E
D*F

D*G
D*H

C*E
C*F

C*G
C*H

B*E
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A*E
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A*G
A*H

* 28

* 28

* 216

* 216

* 216

* 224

* 224

* 224

* 224

32 bits 32 bits

X Y

Figure 7.14: Sosemanuk: Fast implementation of a (32× 32)-bit multiplication mod 232

compute the product. All intermediate products with 4 zero bytes or more (whereby
the counting starts from the least significant byte) can be ignored. So the formula for
the (32× 32)-bit multiplication modulo 232 can be transformed to a reduced form. If we
denote X = (a|b|c|d) and Y = (e|f |g|h) then the multiplication (X · Y ) mod 232 can be
transformed to (a000 + b00 + c0 + d) · (e000 + f00 + g0 + h) mod 232, where a 0 stands
for a complete byte filled with zeros. Now let us take a look at our improved formula:

(X · Y ) mod 232 = ((a000 · e000) + (a000 · f00) + (a000 · g0) + (a000 · h)) +
((b00 · e000) + (b00 · f00) + (b00 · g0) + (b00 · h)) +
((c0 · e000) + (c0 · f00) + (c0 · g0) + (c0 · h)) +
((d · e000) + (d · f00) + (d · g0) + (d · h)) mod 232

If we now eliminate all products with 4 or more zero-bytes we get the following formula:

(X · Y ) mod 232 = ((d · e) + (c · f) + (b · g) + (a · h)) · 224 +
((d · f) + (c · g) + (b · h)) · 216 +
((d · g) + (c · h)) · 28 +
(d · h) mod 232

The C version multiplication requires 16 (1 × 1)-byte multiplications and 15 1-byte
additions. If we disregard some necessary additional operations like moving of values
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between registers and copy operations this multiplication approach needs 62 cycles. The
improved version in Assembly language only requires 10 (1×1)-byte multiplications and
9 1-byte additions, which saves 38 cycles, a saving of 39%. If we involve the number of
calls of the FSM() macro and include the saving of cycles because of the improved 7-bit
rotation, we can save at least 2, 700 CPU cycles.

#define MUL_A(x ) (T32 ( ( x ) << 8) ^ RFF(mul_a [ ( x ) >> 24 ] ) )
2 #define MUL_G(x ) ( ( ( x ) >> 8) ^ RFF(mul_ia [ ( x ) & 0xFF ] ) )

In the LRU() macro, the two macros MUL_A() and MUL_G() (as shown above) are
used. In the MUL_A() macro we can save 128 cycles because we can access the separate
bytes of the parameter x directly. The same applies for the MUL_G() macro, but here
only 33 cycles can be saved. This leads to an overall saving of 151 cycles per call of
the LRU() macro and so 3, 020 CPU cycles can be saved during the whole encryption
process.

The CC1() macro only uses addition modular 232 and the XOR operation, so that no
great saving of cycles can be recorded.

stat ic INLINE void encode32 le (u8 ∗dst , u32 va l )
2 {

dst [ 0 ] = va l & 0xFF ;
4 dst [ 1 ] = ( va l >> 8) & 0xFF ;

dst [ 2 ] = ( va l >> 16) & 0xFF ;
6 dst [ 3 ] = ( va l >> 24) & 0xFF ;

}

Until now, none of the macros writes output to the SRAM. This task is handled by
the SRD() macro, which makes extensive use of the encode32le() macro, which is shown
above. This macro needs 48 right shifts and 4 AND operations, which we can save
because of the direct access of the separate bytes. The encode32le() is used 4 times
within the SRD() macro, which leads to a saving of 52 · 4 = 208 cycles with every call of
the SRD() macro. As the SRD() macro is called 5 times within the encryption process,
we can save 1, 040 CPU cycles.
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7.3 Results

7.3.1 Memory Usage

Table 7.1 shows the memory allocation in flash memory. In more detail, Table 7.1
provides (i) the size of the flash memory which is used to store the program code,
(ii) the required size of flash memory for the storage of static arrays, like S-boxes for
instance, (iii) the total size of program code and static arrays, and (iv) the associated
AVR device, i.e. the smallest device on which the implementation of the cipher can be
executed without errors. The indication of the total flash memory size in percentage is
computed in relation to the maximum available size of flash memory of the corresponding
device which name is given in the last column.

Table 7.1: Memory allocation in flash memory of Assembly implementations

Cipher Program Code Static Arrays Total Memory Device
[byte] [byte] [byte] [percentage]

AES 1154 266 1420 17,33% ATmega8
Dragon (M) 25102 2048 27150 82,86% ATmega32
Dragon (F) 4850 2048 6898 84,20% ATmega8
LEX 1486 5120 6606 80,64% ATmega8
LEX V2 1332 266 1598 19,51% ATmega8
Salsa20 (M) 2984 0 2984 36,43% ATmega8
Salsa20 (F) 1452 0 1452 17,72% ATmega8
Sosemanuk (M) 44648 2048 46696 71,25% ATmega64
Sosemanuk (F) 9092 2048 11140 67,99% ATmega16

Corresponding to Table 7.1 we can determine the existence of two groups in relation
to the required size for the storage of the program code of the ciphers. The first group
is made up by the AES, both versions of Salsa20, both versions of LEX and Dragon (F)
which require only a small consumption of flash memory and can therefore be executed
without problems on a ATmega8. In the second group we find Dragon (M) and both ver-
sions of Sosemanuk. These 3 implementations are not able to run on the small ATmega8
and the macro based version of Sosemanuk can only be processed on an ATmega64.

In contrast to Table 6.2 in Chapter 6.3, Table 7.2 exhibits only four columns. More
precisely, Table 7.2 shows only the total size of the required SRAM (i) and the smallest
device on which the cipher is executable. In Assembly language there is no need for sepa-
rate views on the SRAM because the consumption of the SRAM is compiler-independent
and handmade.

In consideration of the consumption of SRAM all ciphers would be executable on
an ATmega8, which holds a maximum of 1024 bytes. But the limiting factor is not
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Table 7.2: Memory allocation in SRAM of Assembly implementations

Cipher Total SRAM Device
[byte] [percentage]

AES 224 21,88% ATmega8
Dragon (M) 560 27,34% ATmega32
Dragon (F) 560 54,69% ATmega8
LEX 304 29,69% ATmega8
LEX V2 304 29,69% ATmega8
Salsa20 (M) 280 27,34% ATmega8
Salsa20 (F) 280 27,34% ATmega8
Sosemanuk (M) 712 17,38% ATmega64
Sosemanuk (F) 712 69,53% ATmega16

the SRAM usage, but the required amount of flash memory. Looking at Table 7.2
we observe that AES, Salsa20 and LEX need very few bytes in SRAM. Dragon and
Sosemanuk require SRAM of two or three orders of magnitude greater than the rest of
the ciphers.

Considering the function based versions and LEX V2, we notice that flash memory
needs are low for AES, Salsa20 and LEX, moderate for Dragon and high for Sosemanuk.
High amounts of program code also typically indicate a high grade of implementation
complexity. This is especially true for Sosemanuk. In terms of SRAM usage, AES,
Salsa20, and LEX are again most efficient, followed by Dragon and Sosemanuk.

7.3.2 Performance

Performance benchmarks are provided in Table 7.3 and Table 7.4. Table 7.3 shows
the number of cycles for the initialization, key setup, IV setup and encryption for each
cipher. Table 7.4 focuses on the throughput of the encryption function for each cipher
while Table 7.3 gives the number of cycles for one block size.

The amount of cycles needed for initialization is composed of the required activities
to initialize the microprocessor. More precisely, the key, the IV and the plaintext are
stored in the SRAM, the stack pointer is initialized with the highest address of the
SRAM and some definitions are made. The number of cycles needed for initialization
can be reduced by storing the key as fixed value to the flash memory, but most of the
given number of cycles for initialization are required to bring the microprocessor in a
state to work properly. Key setup and IV setup are independent from the block size of
the cipher and can be compared directly. The value given in the last column of Table
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Table 7.3: Performance of initialization, key setup, IV setup, encryption of Assembly
implementations (all numbers given are measured CPU cycles)

Cipher Initialization Key Setup IV Setup Encryption
AES 192 1535 57 5113
Dragon (M) 756 538 21232 16648
Dragon (F) 756 537 23680 17527
LEX 316 1484 5216 5502
LEX V2 313 1575 5595 5963
Salsa20 (M) 464 199 60 17812
Salsa20 (F) 460 199 60 18400
Sosemanuk (M) 514 14627 8559 8739
Sosemanuk (F) 519 15252 9143 9459

7.3 must be correlated with the value in Column 2 of Table 7.4, which is done in this
table.

Concerning the key setup, Salsa20 is the fastest cipher with only 199 needed cycles. It
is followed by Dragon with approximately 2.5 times more required cycles. The AES and
LEX logically feature nearly the same cycle count for key setup (three times the number
of cycles required by Dragon). Sosemanuk exhibits the largest value in Column 3 and
needs almost ten times more cycles as for instance AES.

Table 7.4: Throughput of encryption of Assembly implementations

Cipher Block Size Ratio Throughput Time Memory
[byte] [cycles/byte] [bytes/sec] Tradeoff Metric

@8MHz [cycles/byte][byte]
AES 16 319,56 25034 453779
Dragon (M) 128 130,06 61509 3531197
Dragon (F) 128 136,93 58424 944541
LEX 40 137,55 58161 908655
LEX V2 40 149,08 53664 238222
Salsa20 (M) 64 278,31 28745 830485
Salsa20 (F) 64 287,50 27826 417450
Sosemanuk (M) 80 109,24 73235 5100954
Sosemanuk (F) 80 118,24 67660 1317166

The IV setup is dominated by the AES and Salsa20, which both require less than 100
cycles. Therefore, these two ciphers are the first choice if the cipher should be frequently
reinitialized. The next ciphers in line are LEX, Sosemanuk and Dragon. Dragon requires
more than 20, 000 cycles for the IV which leads to the suggestion of only using Dragon
when the focus is not laid on frequent reinitialization.
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The ratio value given in Column 3 of Table 7.4 is the quotient of Column 2 (which
shows the block size of the ciphers) and Column 5 of Table 7.3. The throughput given
in Column 4 is computed by dividing the CPU clock (8 MHz) by the ratio value in
Column 3. The last column of Table 7.4 introduces a time-memory tradeoff metric, i.e.
the product of the ratio of cycles per keystream byte (shown in Column 3) and the total
amount of flash memory (shown in Column 4 of Table 7.1). Low values of this metric
indicate high efficiency in the time-memory tradeoff.

According to Table 7.4 Sosemanuk and Dragon are the fastest ciphers, followed by
LEX, Salsa20 and AES. Notable is the fact that all ciphers of the eSTREAM project do
the encryption faster than the AES, as specified in the call for participation. But if we
examine the last column, only two ciphers exhibit a better tradeoff metric, namely LEX
and Salsa20.
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8 Summary and Future Work

8.1 Summary

This thesis provides the first implementation results for Dragon, HC-128, LEX, Salsa20
and Sosemanuk on 8-bit microcontrollers and therefore answers the question of how
efficient modern stream ciphers can be implemented on small embedded microcontrollers
that are also constrained in memory resources.

We confirm that all studied stream ciphers reach higher speeds at keystream generation
than the AES. In terms of memory, Salsa20 and LEX can be implemented almost as
compactly as the AES, while Dragon and Sosemanuk require noticeably more memory
resources and may be sub-optimum for embedded applications with very low memory
constraints (although they reach higher throughput rates). Nevertheless it is worth
mentioning that all ciphers are executable on smaller devices in Assembly language,
compared to our C implementations. The only cipher that is assessed to be not suitable
for small embedded microcontrollers is HC-128, because of its high SRAM memory
requirements.

Overall, considering the time-memory tradeoff metric, LEX and Salsa20 have turned
out to yield significantly better results than AES. More detailed information is given
below in four different bar graphs showing the SRAM consumption, the flash memory
consumption, the throughput, and a time memory tradeoff.

NOTE: In C language we choose the original implementations to be included in the
graph. HC-128 is only implemented in C language. Hence, no green bar is indicated in
the HC-128 column. In Assembly language we choose the function based versions (in
case of LEX we choose LEX V2) for the computation of the plots.
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Figure 8.1: Comparison of C and Assembly language implementations: flash memory
consumption

Figure 8.1 shows the flash memory consumption of our implementations, both in C
language as well as in Assembly language. Here, LEX achieves the greatest amount of
savings. The Assembly version needs only 7% of the flash memory requirements of the C
implementation. The next best saving is accomplished by Dragon with 12%. Following
these two ciphers are the AES (21%), Sosemanuk (25%), and Salsa20 (32%).
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Figure 8.2: Comparison of C and Assembly language implementations: SRAM consump-
tion

As Figure 8.2 shows, except for Sosemanuk, all Assembly language implementations
require less SRAM than the C language implementations. Both, the AES and Dragon
share the first place in this category. Both need only 68% of SRAM compared to the
C language version. LEX (70%) and Salsa20 (86%) take the further places. Sosemanuk
needs 11% more SRAM in Assembly language. Further, we see the huge usage of SRAM
of the HC-128 cipher.

NOTE: The SRAM values in C language are optimized values not including the use
of the stack. If we include the stack, Sosemanuk needs less SRAM in Assembly too.
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Figure 8.3: Comparison of C and Assembly language implementations: throughput

Figure 8.3 shows the throughput data of our implementations. Here, Salsa20 yields
the greatest enhancement concerning throughput with a 493% higher throughput rate.
Salsa20 is followed by AES (246%), Sosemanuk (149%), Dragon (138%), and LEX
(135%).

NOTE: The macro-based versions of our Assembly implementations reach higher
throughput rates, but as the focus lies on minimal flash memory usage, these versions
are not shown in the graph.
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Figure 8.4: Comparison of C and Assembly language implementations: time memory
tradeoff

The time memory tradeoff metric as given in Figure 8.4 is the product of the used flash
memory and the encryption ratio (cycles needed for encryption multiplied by the block
size of the cipher). It is a good value for benchmarking how efficiently the Assembly
versions run on the microcontrollers, compared to the C language implementations. LEX
achieves the greatest reduction and the time memory tradeoff value reduces to only 5.5%
of the C implementation value, which corresponds to a nearly 18 times higher efficiency
rate. Salsa20 is 15 times more efficient (6.6%), AES and Dragon are 12 times more
efficient (8.7%), and Sosemanuk is at least 6 times more efficient (16.7%) implemented
in Assembly language.
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8.2 Future Work

The next obvious step is the implementation of the eSTREAM Phase 3 candidates of
Profile I. Some ciphers have been advanced from the non-focused group to the focused
group of Phase 3 (i.e. CryptMT, NLS, and Rabbit). These ciphers should also be
considered for Assembly language implementations.

The implementation in Assembly language offers great potential for optimizing the
ciphers and the chance to fit them perfectly to a particular device. This probably helps
to determine the best stream cipher from the perspective of the the industry and of
course, the eSTREAM project as well.

Furthermore it makes sense to implement some of the stream ciphers belonging to
Profile II of the eSTREAM project. These ciphers are indeed optimized for the imple-
mentation on hardware but nevertheless it may be reasonable to implement them, too.
Certain ciphers of Profile II (like Trivium for instance) are designed for eventual use
in constrained environments. If it is possible to create, for instance, an 8-bit output
version of Trivium, a software implementation can also achieve good results in terms of
improved speed and memory consumption.



A Appendix

In this chapter we list the source files of our C and Assembly language implementations.
All listed files are included on the attached compact disc.

A.1 C language implementations

• AES
◦ aes-avr.c (26,204 Bytes)
◦ Makefile (16,926 Bytes)

• Dragon
◦ dragon-avr.c (26,434 Bytes)
◦ Makefile (16,933 Bytes)

• HC-128
◦ hc128-avr.c (16,517 Bytes)
◦ Makefile (16,937 Bytes)

• LEX
◦ lex-avr.c (39,080 Bytes)
◦ Makefile (16,929 Bytes)

• Salsa20
◦ salsa20-avr.c (7,988 Bytes)
◦ Makefile (16,936 Bytes)
◦ salsa20-avro.c (9,855 Bytes)
◦ Makefile (16,936 Bytes)

• Sosemanuk
◦ sosemanuk-avrm.c (25,805 Bytes)
◦ Makefile (16,937 Bytes)
◦ sosemanuk-avrf.c (31,506 Bytes)
◦ Makefile (16,937 Bytes)
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A.2 Assembly language implementations

• AES
◦ aes.asm (14,498 Bytes)

• Dragon
◦ dragonf.asm (77,400 Bytes)
◦ dragonm.asm (86,591 Bytes)

• LEX
◦ lex-aes.asm (17,665 Bytes)
◦ lex-lex.asm (42,064 Bytes)

• Salsa20
◦ salsa20f.asm (16,180 Bytes)
◦ salsa20m.asm (16,258 Bytes)

• Sosemanuk
◦ sosemanukf.asm (131,259 Bytes)
◦ sosemanukm.asm (129,805 Bytes)
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